首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3350篇
  免费   328篇
  国内免费   216篇
  2024年   6篇
  2023年   57篇
  2022年   48篇
  2021年   81篇
  2020年   124篇
  2019年   141篇
  2018年   135篇
  2017年   126篇
  2016年   168篇
  2015年   134篇
  2014年   168篇
  2013年   231篇
  2012年   127篇
  2011年   140篇
  2010年   116篇
  2009年   155篇
  2008年   173篇
  2007年   183篇
  2006年   137篇
  2005年   139篇
  2004年   113篇
  2003年   106篇
  2002年   103篇
  2001年   98篇
  2000年   72篇
  1999年   71篇
  1998年   88篇
  1997年   54篇
  1996年   66篇
  1995年   61篇
  1994年   43篇
  1993年   42篇
  1992年   58篇
  1991年   38篇
  1990年   53篇
  1989年   37篇
  1988年   29篇
  1987年   20篇
  1986年   24篇
  1985年   21篇
  1984年   32篇
  1983年   9篇
  1982年   13篇
  1981年   14篇
  1980年   10篇
  1979年   11篇
  1978年   6篇
  1977年   2篇
  1976年   7篇
  1973年   2篇
排序方式: 共有3894条查询结果,搜索用时 265 毫秒
101.
The competitiveness and sustainability of low input cost dairy production systems are generally supported by efficient use of pasture in the diets. Therefore, pasture intake directly affects overall efficiency of these systems. We aimed to assess feeding and grazing management main factors that affect pasture dry matter intake (DMI) in commercial dairy farms during the different seasons of the year. Fortnightly visits to 28 commercial dairies were carried out between June 2016 and May 2017 to record production and price, supplement offered and price, pasture access time (PAT), herbage mass (HM) and allowance (HA). Only farms with the most contrasting estimated pasture DMI per cow (eDMI) were compared as systems with high (HPI; N = 8) or low (LPI; N = 8) pasture DMI. Despite a lower individual milk production in HPI than LPI (19.0 v. 23.3 ± 0.7 l/cow, P < 0.01), daily margin over feeding cost was not different between groups (3.07 v. 2.93 ± 0.15 U$S/cow for HPI and LPI, respectively). During autumn and winter, HPI cows ingested more pasture than LPI cows (8.3 v. 4.6 and 5.9 v. 2.9 ± 0.55 kg DM/cow per day, respectively, P < 0.01) although PAT, HM and HA were similar between groups. Both groups offered high supplementation levels during these seasons, even though greater in LPI than HPI (14.7 v. 9.7 ± 0.7 kg DM supplement/cow per day, respectively, P < 0.01). On the other hand, differences between groups for both pasture and supplement DMI were more contrasting during spring and summer (13.1 v. 7.3 ± 0.5 and 4.0 v. 11.4 ± 0.4 kg DM/cow per day for HPI and LPI, respectively, P < 0.01), with higher PAT in both seasons (P < 0.05) and higher HA during summer in HPI than LPI (P < 0.01). Unlike LPI, during these seasons HPI adjusted offered supplement according to HA, achieving a higher pasture eDMI and making more efficient use of available pastoral resource than LPI. As there was no grazing limiting condition for pasture harvesting in either group, the main factor affecting pasture DMI was a pasture by supplement substitution effect. These results reinforce the importance of an efficient grazing management, and using supplements to nutritionally complement pasture intake rather than as a direct way to increase milk production.  相似文献   
102.
103.
Input–output analysis is one of the central methodological pillars of industrial ecology. However, the literature that discusses different structures of environmental extensions (EEs), that is, the scope of physical flows and their attribution to sectors in the monetary input–output table (MIOT), remains fragmented. This article investigates the conceptual and empirical implications of applying two different but frequently used designs of EEs, using the case of energy accounting, where one represents energy supply while the other energy use in the economy. We derive both extensions from an official energy supply–use dataset and apply them to the same single‐region input–output (SRIO) model of Austria, thereby isolating the effect that stems from the decision for the extension design. We also crosscheck the SRIO results with energy footprints from the global multi‐regional input–output (GMRIO) dataset EXIOBASE. Our results show that the ranking of footprints of final demand categories (e.g., household and export) is sensitive to the extension design and that product‐level results can vary by several orders of magnitude. The GMRIO‐based comparison further reveals that for a few countries the supply‐extension result can be twice the size of the use‐extension footprint (e.g., Australia and Norway). We propose a graph approach to provide a generalized framework to disclosing the design of EEs. We discuss the conceptual differences between the two extension designs by applying analogies to hybrid life‐cycle assessment and conclude that our findings are relevant for monitoring of energy efficiency and emission reduction targets and corporate footprint accounting.  相似文献   
104.
Forty years ago, the ‘life‐dinner principle’ was proposed as an example of an asymmetry that may lead prey species to experience stronger selection than their predators, thus accounting for the high frequency with which prey escape alive from interaction with a predator. This principle remains an influential concept in the scientific literature, despite several works suggesting that the concept relies on many under‐appreciated assumptions and does not apply as generally as was initially proposed. Here, we present a novel model describing a very different asymmetry to that proposed in the life‐dinner principle, but one that could apply broadly. We argue that asymmetries between the relative costs and benefits to predators and prey of selecting a risky behaviour during an extended predator–prey encounter could lead to an enhanced likelihood of escape for the prey. Any resulting advantage to prey depends upon there being a behaviour or choice that introduces some inherent danger to both predator and prey if they adopt it, but which if the prey adopts the predator must match in order to have a chance of successful predation. We suggest that the circumstances indicated by our model could apply broadly across diverse taxa, including both risky spatial or behavioural choices.  相似文献   
105.
Changing climate can modify predator–prey interactions and induce declines or local extinctions of species due to reductions in food availability. Species hoarding perishable food for overwinter survival, like predators, are predicted to be particularly susceptible to increasing temperatures. We analysed the influence of autumn and winter weather, and abundance of main prey (voles), on the food‐hoarding behaviour of a generalist predator, the Eurasian pygmy owl (Glaucidium passerinum), across 16 years in Finland. Fewer freeze–thaw events in early autumn delayed the initiation of food hoarding. Pygmy owls consumed more hoarded food with more frequent freeze–thaw events and deeper snow cover in autumn and in winter, and lower precipitation in winter. In autumn, the rotting of food hoards increased with precipitation. Hoards already present in early autumn were much more likely to rot than the ones initiated in late autumn. Rotten food hoards were used more in years of low food abundance than in years of high food abundance. Having rotten food hoards in autumn resulted in a lower future recapture probability of female owls. These results indicate that pygmy owls might be partly able to adapt to climate change by delaying food hoarding, but changes in the snow cover, precipitation and frequency of freeze–thaw events might impair their foraging and ultimately decrease local overwinter survival. Long‐term trends and future predictions, therefore, suggest that impacts of climate change on wintering food‐hoarding species could be substantial, because their ‘freezers’ may no longer work properly. Altered usability and poorer quality of hoarded food may further modify the foraging needs of food‐hoarding predators and thus their overall predation pressure on prey species. This raises concerns about the impacts of climate change on boreal food webs, in which ecological interactions have evolved under cold winter conditions.  相似文献   
106.
Stable core microbial communities have been described in numerous animal species and are commonly associated with fitness benefits for their hosts. Recent research, however, highlights examples of species whose microbiota are transient and environmentally derived. Here, we test the effect of diet on gut microbial community assembly in the spider Badumna longinqua. Using 16S rRNA gene amplicon sequencing combined with quantitative PCR, we analyzed diversity and abundance of the spider's gut microbes, and simultaneously characterized its prey communities using nuclear rRNA markers. We found a clear correlation between community similarity of the spider's insect prey and gut microbial DNA, suggesting that microbiome assembly is primarily diet‐driven. This assumption is supported by a feeding experiment, in which two types of prey—crickets and fruit flies—both substantially altered microbial diversity and community similarity between spiders, but did so in different ways. After cricket consumption, numerous cricket‐derived microbes appeared in the spider's gut, resulting in a rapid homogenization of microbial communities among spiders. In contrast, few prey‐associated bacteria were detected after consumption of fruit flies; instead, the microbial community was remodelled by environmentally sourced microbes, or abundance shifts of rare taxa in the spider's gut. The reshaping of the microbiota by both prey taxa mimicked a stable core microbiome in the spiders for several weeks post feeding. Our results suggest that the spider's gut microbiome undergoes pronounced temporal fluctuations, that its assembly is dictated by the consumed prey, and that different prey taxa may remodel the microbiota in drastically different ways.  相似文献   
107.
Knowledge of zooplankton in situ diet is critical for accurate assessment of marine ecosystem function and structure, but due to methodological constraints, there is still a limited understanding of ecological networks in marine ecosystems. Here, we used DNA‐metabarcoding to study trophic interactions, with the aim to unveil the natural diet of zooplankton species under temporal variation of food resources. Several target consumers, including copepods and cladocerans, were investigated by sequencing 16S rRNA and 18S rRNA genes to identify prokaryote and eukaryote potential prey present in their guts. During the spring phytoplankton bloom, we found a dominance of diatom and dinoflagellate trophic links to copepods. During the summer period, zooplankton including cladocerans showed a more diverse diet dominated by cyanobacteria and heterotrophic prey. Our study suggests that copepods present trophic plasticity, changing their natural diet over seasons, and adapting their feeding strategies to the available prey spectrum, with some species being more selective. We did not find a large overlap of prey consumed by copepods and cladocerans, based on prey diversity found in their guts, suggesting that they occupy different roles in the trophic web. This study represents the first molecular approach to investigate several zooplankton–prey associations under seasonal variation, and highlights how, unlike other techniques, the diversity coverage is high when using DNA, allowing the possibility to detect a wide range of trophic interactions in plankton communities.  相似文献   
108.
According to classic theory, species'' population dynamics and distributions are less influenced by species interactions under harsh climatic conditions compared to under more benign climatic conditions. In alpine and boreal ecosystems in Fennoscandia, the cyclic dynamics of rodents strongly affect many other species, including ground-nesting birds such as ptarmigan. According to the ‘alternative prey hypothesis’ (APH), the densities of ground-nesting birds and rodents are positively associated due to predator–prey dynamics and prey-switching. However, it remains unclear how the strength of these predator-mediated interactions change along a climatic harshness gradient in comparison with the effects of climatic variation. We built a hierarchical Bayesian model to estimate the sensitivity of ptarmigan populations to interannual variation in climate and rodent occurrence across Norway during 2007–2017. Ptarmigan abundance was positively linked with rodent occurrence, consistent with the APH. Moreover, we found that the link between ptarmigan abundance and rodent dynamics was strongest in colder regions. Our study highlights how species interactions play an important role in population dynamics of species at high latitudes and suggests that they can become even more important in the most climatically harsh regions.  相似文献   
109.
Diet studies are fundamental for understanding trophic connections in marine ecosystems. In the southeastern US, the common bottlenose dolphin Tursiops truncatus is the predominant marine mammal in coastal waters, but its role as a top predator has received little attention. Diet studies of piscivorous predators, like bottlenose dolphins, start with assessing prey otoliths recovered from stomachs or feces, but digestive erosion hampers species identification and underestimates fish weight (FW). To compensate, FW is often estimated from the least affected otoliths and scaled to other otoliths, which also introduces bias. The sulcus, an otolith surface feature, has a species‐specific shape of its ostium and caudal extents, which is within the otolith edge for some species. We explored whether the sulcus could improve species identification and estimation of prey size using a case study of four sciaenid species targeted by fisheries and bottlenose dolphins in North Carolina. Methods were assessed first on otoliths from a reference collection (n = 421) and applied to prey otoliths (n = 5,308) recovered from 120 stomachs of dead stranded dolphins. We demonstrated in reference‐collection otoliths that cauda to sulcus length (CL:SL) could discriminate between spotted seatrout (Cynoscion nebulosus) and weakfish (Cynoscion regalis) (classification accuracy = 0.98). This method confirmed for the first time predation of spotted seatrout by bottlenose dolphins in North Carolina. Using predictive models developed from reference‐collection otoliths, we provided evidence that digestion affects otolith length more than sulcus or cauda length, making the latter better predictors. Lastly, we explored scenarios of calculating total consumed biomass across degrees of digestion. A suggested approach was for the least digested otoliths to be scaled to other otoliths iteratively from within the same stomach, month, or season as samples allow. Using the otolith sulcus helped overcome challenges of species identification and fish size estimation, indicating their potential use in other diet studies.  相似文献   
110.
A key focus of ecologists is explaining the origin and maintenance of morphological diversity and its association with ecological success. We investigate potential benefits and costs of a common and varied morphological trait, cuticular spines, for foraging behavior, interspecific competition, and predator–prey interactions in naturally co‐occurring spiny ants (Hymenoptera: Formicidae: Polyrhachis) in an experimental setting. We expect that a defensive trait like spines might be associated with more conspicuous foraging, a greater number of workers sent out to forage, and potentially increased competitive ability. Alternatively, consistent with the ecological trade‐off hypothesis, we expect that investment in spines for antipredator defense might be negatively correlated with these other ecological traits. We find little evidence for any costs to ecological traits, instead finding that species with longer spines either outperform or do not differ from species with shorter spines for all tested metrics, including resource discovery rate and foraging effort as well as competitive ability and antipredator defense. Spines appear to confer broad antipredator benefits and serve as a form of defense with undetectable costs to key ecological abilities like resource foraging and competitive ability, providing an explanation for both the ecological success of the study genus and the large number of evolutionary origins of this trait across all ants. This study also provides a rare quantitative empirical test of ecological effects related to a morphological trait in ants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号