首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   438篇
  免费   16篇
  国内免费   27篇
  481篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   12篇
  2020年   9篇
  2019年   9篇
  2018年   11篇
  2017年   13篇
  2016年   7篇
  2015年   16篇
  2014年   24篇
  2013年   16篇
  2012年   13篇
  2011年   19篇
  2010年   8篇
  2009年   21篇
  2008年   20篇
  2007年   30篇
  2006年   17篇
  2005年   15篇
  2004年   22篇
  2003年   20篇
  2002年   9篇
  2001年   12篇
  2000年   15篇
  1999年   20篇
  1998年   15篇
  1997年   16篇
  1996年   8篇
  1995年   6篇
  1994年   5篇
  1993年   10篇
  1992年   9篇
  1991年   7篇
  1990年   8篇
  1989年   5篇
  1988年   7篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1977年   1篇
排序方式: 共有481条查询结果,搜索用时 0 毫秒
21.
A novel short neurotoxin, cobrotoxin c (CBT C) was isolated from the venom of monocellate cobra (Naja kaouthia) using a combination of ion-exchange chromatography and FPLC. Its primary structure was determined by Edman degradation. CBT C is composed of 61 amino acid residues. It differs from cobrotoxin b (CBT B) by only two amino acid substitutions, Thr/Ala11 and Arg/Thr56, which are not located on the functionally important regions by sequence similarity. However, the LD50 is 0.08 mg/g to mice, i.e. approximately five-fold higher than for CBT B. Strikingly, a structure-function relationship analysis suggests the existence of a functionally important domain on the outside of Loop III of CBT C. The functionally important basic residues on the outside of Loop III might have a pairwise interaction with alpha subunit, instead of gamma or delta subunits of the nicotinic acetylcholine receptor (nAChR).  相似文献   
22.
Clostridium botulinum type E toxin was isolated in the form of a complex with RNA(s) from bacterial cells. Characterization of the complexed RNA remains to be elucidated. The RNA is identified here as ribosomal RNA (rRNA) having 23S and 16S components. The RNA-toxin complexes were found to be made up of three types with different molecular sizes. The three types of RNA-toxin complex are toxin bound to both the 23S and 16S rRNA, toxin bound to the 16S rRNA and a small amount of 23S rRNA, and toxin bound only to the 16S rRNA.  相似文献   
23.
Placental ribonuclease inhibitor (RI) binds diverse mammalian RNases with dissociation constants that are in the femtomolar range. Previous studies on the complexes of RI with RNase A and angiogenin revealed that RI utilises largely distinctive interactions to achieve high affinity for these two ligands. Here we report a 2.0 angstroms resolution crystal structure of RI in complex with a third ligand, eosinophil-derived neurotoxin (EDN), and a mutational analysis based on this structure. The RI-EDN interface is more extensive than those of the other two complexes and contains a considerably larger set of interactions. Few of the contacts present in the RI-angiogenin complex are replicated; the correspondence to the RI-RNase A complex is somewhat greater, but still modest. The energetic contributions of various interface regions differ strikingly from those in the earlier complexes. These findings provide insight into the structural basis for the unusual combination of high avidity and relaxed stringency that RI displays.  相似文献   
24.
5-HT(3) (serotonin type 3) receptors are targets of antiemetics, antipsychotics, and antidepressants and are believed to play a role in cognition. Nevertheless, contrasting results have been obtained with respect to their functions in the CNS and in the control of transmitter release. We used rat hippocampal neurons in single-neuron microcultures to identify the roles of presynaptic 5-HT(3) receptors at central synapses. 5-HT (10 microm) caused a transient > 10-fold increase in the frequency of miniature inhibitory postsynaptic currents without affecting amplitudes or kinetics. This effect was abolished by tropisetron (30 nm) and when Ca(2+) channels were blocked by 100 microm Cd(2+) it was mimicked and occluded when neurons were depolarized by 20 mm, but not 10 mm, K(+). Thus, activation of presynaptic 5-HT(3) receptors increased spontaneous GABA release by causing depolarization and opening of voltage-gated Ca(2+) channels. In microculture neurons, 5-HT transiently reduced action potential-evoked inhibitory autaptic currents by > 50%; this effect was blocked by tropisetron and mimicked by 20 mm, but not 10 mm, K(+). Miniature excitatory postsynaptic currents were not altered by 5-HT. Excitatory autaptic currents were tonically reduced, an effect attenuated by 5-HT(1A) antagonists. Thus, presynaptic 5-HT(3) receptors control GABA, but not glutamate, release and mediate opposite effects on spontaneous and action potential-dependent release.  相似文献   
25.
The molecular architecture of the cytomatrix of presynaptic nerve terminals is poorly understood. Here we show that Bassoon, a novel protein of >400,000 M r, is a new component of the presynaptic cytoskeleton. The murine bassoon gene maps to chromosome 9F. A comparison with the corresponding rat cDNA identified 10 exons within its protein-coding region. The Bassoon protein is predicted to contain two double-zinc fingers, several coiled-coil domains, and a stretch of polyglutamines (24 and 11 residues in rat and mouse, respectively). In some human proteins, e.g., Huntingtin, abnormal amplification of such poly-glutamine regions causes late-onset neurodegeneration. Bassoon is highly enriched in synaptic protein preparations. In cultured hippocampal neurons, Bassoon colocalizes with the synaptic vesicle protein synaptophysin and Piccolo, a presynaptic cytomatrix component. At the ultrastructural level, Bassoon is detected in axon terminals of hippocampal neurons where it is highly concentrated in the vicinity of the active zone. Immunogold labeling of synaptosomes revealed that Bassoon is associated with material interspersed between clear synaptic vesicles, and biochemical studies suggest a tight association with cytoskeletal structures. These data indicate that Bassoon is a strong candidate to be involved in cytomatrix organization at the site of neurotransmitter release.  相似文献   
26.
Therapeutic and mechanistic studies of the presynaptically targeted clostridial neurotoxins (CNTs) have been limited by the need for a scalable, cell-based model that produces functioning synapses and undergoes physiological responses to intoxication. Here we describe a simple and robust method to efficiently differentiate murine embryonic stem cells (ESCs) into defined lineages of synaptically active, networked neurons. Following an 8 day differentiation protocol, mouse embryonic stem cell-derived neurons (ESNs) rapidly express and compartmentalize neurotypic proteins, form neuronal morphologies and develop intrinsic electrical responses. By 18 days after differentiation (DIV 18), ESNs exhibit active glutamatergic and γ-aminobutyric acid (GABA)ergic synapses and emergent network behaviors characterized by an excitatory:inhibitory balance. To determine whether intoxication with CNTs functionally antagonizes synaptic neurotransmission, thereby replicating the in vivo pathophysiology that is responsible for clinical manifestations of botulism or tetanus, whole-cell patch clamp electrophysiology was used to quantify spontaneous miniature excitatory post-synaptic currents (mEPSCs) in ESNs exposed to tetanus neurotoxin (TeNT) or botulinum neurotoxin (BoNT) serotypes /A-/G. In all cases, ESNs exhibited near-complete loss of synaptic activity within 20 hr. Intoxicated neurons remained viable, as demonstrated by unchanged resting membrane potentials and intrinsic electrical responses. To further characterize the sensitivity of this approach, dose-dependent effects of intoxication on synaptic activity were measured 20 hr after addition of BoNT/A. Intoxication with 0.005 pM BoNT/A resulted in a significant decrement in mEPSCs, with a median inhibitory concentration (IC50) of 0.013 pM. Comparisons of median doses indicate that functional measurements of synaptic inhibition are faster, more specific and more sensitive than SNARE cleavage assays or the mouse lethality assay. These data validate the use of synaptically coupled, stem cell-derived neurons for the highly specific and sensitive detection of CNTs.  相似文献   
27.
Botulinum neurotoxins (BoNTs) are produced as progenitor toxin complexes (PTCs) by Clostridium botulinum. The PTCs are composed of BoNT and non-toxic neurotoxin-associated proteins (NAPs), which serve to protect and deliver BoNT through the gastrointestinal tract in food borne botulism. HA33 is a key NAP component that specifically recognizes host carbohydrates and helps enrich PTC on the intestinal lumen preceding its transport across the epithelial barriers. Here, we report the crystal structure of HA33 of type B PTC (HA33/B) in complex with lactose at 1.46 Å resolution. The structural comparisons among HA33 of serotypes A–D reveal two different HA33–glycan interaction modes. The glycan-binding pockets on HA33/A and B are more suitable to recognize galactose-containing glycans in comparison to the equivalent sites on HA33/C and D. On the contrary, HA33/C and D could potentially recognize Neu5Ac as an independent receptor, whereas HA33/A and B do not. These findings indicate that the different oral toxicity and host susceptibility observed among different BoNT serotypes could be partly determined by the serotype-specific interaction between HA33 and host carbohydrate receptors. Furthermore, we have identified a key structural water molecule that mediates the HA33/B–lactose interactions. It provides the structural basis for development of new receptor-mimicking compounds, which have enhanced binding affinity with HA33 through their water-displacing moiety.  相似文献   
28.
A rapid immunochromatographic assay was developed to detect botulinum neurotoxin type B (BoNT/B). The assay was based on the sandwich format using polyclonal antibody (Pab). The thiophilic gel purified anti-BoNT/B Pab was immobilized to a defined detection zone on a porous nitrocellulose membrane and conjugated to colloidal gold particles that served as a detection reagent. The BoNT/B-containing sample was added to the membrane and allowed to react with Pab-coated particles. The mixture was then passed along the porous membrane by capillary action past the Pab in the detection zone, which will bind the particles that had BoNT/B bound to their surface, giving a red colour within this detection zone with an intensity proportional to BoNT/B concentration. In the absence of BoNT/B, no immunogold was bound to the solid-phase antibody. With this method, 50 ng/ml of BoNT/B was detected in less than 10 min. The assay sensitivity can be increased by silver enhancement to 50 pg/ml. The developed BoNT/B assay also showed no cross reaction to type A neurotoxin (BoNT/A) and type E neurotoxin (BoNT/E).  相似文献   
29.
Presynaptic regulation of dopaminergic transmission in the striatum   总被引:1,自引:0,他引:1  
1. In vitro studies have indicated that several transmitters present in the striatum can regulate presynaptically the release of dopamine (DA) from nerve terminals of the nigrostriatal DA neurons. 2. The receptors involved in these local regulatory processes are located or not located on DA nerve terminals. 3. Recent in vivo investigations have demonstrated that the corticostriatal glutamatergic neurons facilitate presynaptically the release of DA and have allowed the analysis of the respective roles of presynaptic events and nerve activity in the control of DA transmission.  相似文献   
30.
Botulinum neurotoxin (NT) is a potent inhibitor of neurotransmitter secretion, but its intracellular mechanism and site of action are unknown. In this study, the intracellular action of NT was investigated by rendering the secretory apparatus of PC12 cells accessible to macromolecules by a recently described "cell cracking" procedure. Soluble cytoplasmic factors were depleted from permeabilized cells by washing to generate cell "ghosts" which retained cellular structural components and intracellular organelles (including secretory granules). The PC12 cell ghosts exhibited Ca(2+)-activated [3H]norepinephrine release which was enhanced by cytosolic proteins and MgATP. PC12 cell ghosts provide the opportunity to distinguish the intracellular action of NT on soluble cytoplasmic components versus structural cellular components. The 150-kDa NT and the 50-kDa light chain of serotypes E and B, and to a lesser extent type A, inhibited Ca(2+)-activated [3H]norepinephrine release in PC12 ghosts, but not in intact PC12 cells. The 100-kDa heavy chain had no effect. This indicates that NT acts at an intracellular site in these cells permeabilized by "cell cracking." The inhibition of secretion by NT was rapid and irreversible under the incubation conditions used. NT inhibition of [3H]-norepinephrine release from PC12 ghosts occurred in the absence of cytosolic proteins and MgATP and was not reversed by the addition of cytosolic proteins and MgATP, indicating that NT acts at an intracellular membranous or cytoskeletal site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号