首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3573篇
  免费   315篇
  国内免费   145篇
  4033篇
  2024年   15篇
  2023年   44篇
  2022年   70篇
  2021年   86篇
  2020年   84篇
  2019年   105篇
  2018年   132篇
  2017年   108篇
  2016年   104篇
  2015年   108篇
  2014年   175篇
  2013年   378篇
  2012年   138篇
  2011年   129篇
  2010年   99篇
  2009年   131篇
  2008年   138篇
  2007年   168篇
  2006年   147篇
  2005年   119篇
  2004年   116篇
  2003年   133篇
  2002年   90篇
  2001年   75篇
  2000年   60篇
  1999年   72篇
  1998年   79篇
  1997年   69篇
  1996年   59篇
  1995年   59篇
  1994年   61篇
  1993年   54篇
  1992年   62篇
  1991年   65篇
  1990年   44篇
  1989年   31篇
  1988年   48篇
  1987年   26篇
  1986年   39篇
  1985年   59篇
  1984年   49篇
  1983年   42篇
  1982年   49篇
  1981年   36篇
  1980年   30篇
  1979年   14篇
  1978年   14篇
  1977年   4篇
  1976年   8篇
  1973年   2篇
排序方式: 共有4033条查询结果,搜索用时 15 毫秒
41.
Abstract: The combined effect of hydrostatic pressure and heat shock on thermotolerance was examined in the deep-sea hyperthermophilic archaeon Pyrococcus strain ES4. Pressure equivalent to the depth of isolation (22 MPa) enhanced ES4's survival at super-optimal temperatures (101–108°C) relative to low pressure (3 MPa). Pressure also raised the temperature at which a putative heat-shock protein (98 kDa) accumulated. ES4 grown at 95°C and 3 MPa displayed immediate enhanced thermotolerance to 105°C after being shifted to 22 MPa. Cultures grown at 95°C and 22 MPa and then heat shocked at 105°C and 3 MPa retained enhanced thermotolerance after decompression. These results suggest that this deep-sea hyperthermophile has developed pressure-induced responses that include increased survival to hyperthermal conditions.  相似文献   
42.
Whole-cell patch clamp recordings were done on giant protoplasts of Escherichia coli. The pressure sensitivity of the protoplasts was studied. Two different unit conductance mechanosensitive channels, 1100 ± 25 pS and 350 ± 14 pS in 400 mm symmetric KCl solution, were observed upon either applying positive pressure to the interior of the cells or down shocking the cells osmotically. The 1100 pS conductance channel discriminated poorly among the monovalent ions tested and it was permeable to Ca2+ and glutamate?. Both of the two channels were sensitive to the osmotic gradient across the membrane; the unit conductances of the channels remained constant while the mean current of the cell was increased by increasing the osmotic gradient. Both of the channels were voltage sensitive. Voltage-ramp results showed that the pressure sensitivity of protoplasts was voltage dependent: there were more channels active upon depolarization than hyperpolarization. The mech anosensitive channels were reversibly blocked by gadolinium ion. Also they could reversibly be inhibited by protons. Mutations in two of the potassium efflux systems, KefB and KefC, did not affect the channel activity, while a null mutation in the gene for KefA changed the channel activity significantly. This indicates a potential modulation of these channels by KefA.  相似文献   
43.
A correspondence between open reading frames in sense and antisense strands is expected from the hypothesis that the prototypic triplet code was of general form RNY, where R is a purine base, N is any base, and Y is a pyrimidine. A deficit of stop codons in the antisense strand (and thus long open reading frames) is predicted for organisms with high G + C percentages; however, two bacteria (Azotobacter vinelandii, Rhodobacter capsulatum) have larger average antisense strand open reading frames than predicted from (G + C)%. The similar Codon frequencies found in sense and antisense strands can be attributed to the wide distribution of inverted repeats (stem-loop potential) in natural DNA sequences.  相似文献   
44.
The role of glucose in ajmalicine production by Catharanthus roseus was investigated in the second stage of a two-stage batch process. Activities of tryptophan decar-boxylate (TDC) and anthranilate synthase (AS), two enzymes In the pathway leading to ajmalicine, were higher after induction with 40 g/L glucose than after induction with 60 or 80 g/L glucose. Experiments with different media containing mixtures of glucose and the nonpermeating osmotic agent xylose, and using an already induced culture as inoculum, revealed that a minimum amount of glucose is required to support ajmalicine production after enzyme induction. This requirement was not an osmotic effect. The relation between the glucose concentration and the specific ajmalicine production rate, q(p), was investigated in seven (fed-)batch cultures with constant glucose concentrations: 23, 29, 35, 53, 57, 75, and 98 g/L. In the cultures with a low glucose concentration (23, 29, and 35 g/L) the q(p) was 2.7-times higher than the cultures with 53 and 57 g/L, and almost six times higher than the cultures with a high glucose concentration (75 and 98 g/L). A glucose perturbation experiment (from 53 to 32 g/L) demonstrated that the ajmalicine production rate was adjusted without much delay. A kinetic equation is proposed for the relationship between the glucose concentration and q(p). Differences in enzyme induction and ajmalicine production at different glucose levels could not be explained by the intracellular concentrations of glucose, fructose, sucrose, or starch. (c) 1995 John Wiley & Sons Inc.  相似文献   
45.
Heat shock potentiated the nitric oxide production (EPR assay) in the liver, kidney, heart, spleen, intestine, and brain. The heat shock-induced sharp transient increase in the rate of nitric oxide production preceded the accumulation of heat shock proteins (HSP70) (Western blot analysis) as measured in the heart and liver. In all organs the nitric oxide formation was completely blocked by the NO-synthase inhibitor (L-NNA). L-NNA also markedly attenuated the heat shock-induced accumulation of HSP70. The results suggests that nitric oxide is involved in the heat shock-induced activation of HSP70 synthesis.  相似文献   
46.
Frequent measurement of below ground water levels at multiple locations is an important component of many wetland ecosystem studies. These measurements, however, are usually time consuming, labor intensive, and expensive. This paper describes a water-level sensor that is inexpensive and easy to construct. The sensor is placed below the expected low water level in a shallow well and, when connected to a datalogger, uses a pressure transducer to detect groundwater or surface water elevations. Details of pressure transducer theory, sensor construction, calibration, and examples of field installations are presented. Although the transducers must be individually calibrated, the sensors have a linear response to changing water levels (r 2 .999). Measurement errors resulting from temperature fluctuations are shown to be about 4 cm over a 35°C temperature range, but are minimal when the sensors are installed in groundwater wells where temperatures are less variable. Greater accuracy may be obtained by incorporating water temperature data into the initial calibration (0.14 cm error over a 35C temperature range). Examples of the utility of these sensors in studies of groundwater/surface water interactions and the effects of water level fluctuations on tree growth are provided.  相似文献   
47.
Although bacterial species display wide variation in their overall GC contents, the genes within a particular species' genome are relatively similar in base composition. As a result, sequences that are novel to a bacterial genome—i.e., DNA introduced through recent horizontal transfer—often bear unusual sequence characteristics and can be distinguished from ancestral DNA. At the time of introgression, horizontally transferred genes reflect the base composition of the donor genome; but, over time, these sequences will ameliorate to reflect the DNA composition of the new genome because the introgressed genes are subject to the same mutational processes affecting all genes in the recipient genome. This process of amelioration is evident in a large group of genes involved in host-cell invasion by enteric bacteria and can be modeled to predict the amount of time required after transfer for foreign DNA to resemble native DNA. Furthermore, models of amelioration can be used to estimate the time of introgression of foreign genes in a chromosome. Applying this approach to a 1.43-megabase continuous sequence, we have calculated that the entire Escherichia coli chromosome contains more than 600 kb of horizontally transferred, protein-coding DNA. Estimates of amelioration times indicate that this DNA has accumulated at a rate of 31 kb per million years, which is on the order of the amount of variant DNA introduced by point mutations. This rate predicts that the E. coli and Salmonella enterica lineages have each gained and lost more than 3 megabases of novel DNA since their divergence. Received: 7 July 1996 / Accepted: 27 September 1996  相似文献   
48.
To elucidate the role of the water receptor in the frog (Rana catesbeiana), reflex activities elicited by its excitation were studied. Application of tap water to the oral mucosa depressed the rhythmical movement of gorge (buccal) respiration, accompanied by an elevation of the inner pressure of the oral cavity (buccal pressure). Tonic reflex discharges were elicited in the nerves innervating the submental and submaxillary muscles, which close the nostrils, the pterygoid and the profound portion of the major masseter muscles, which produce a strong bite, and the geniohyoid and hyoglossus muscles, which elevate buccal pressure. These muscles, except for the pterygoid, also participate in the rhythmical movement of gorge respiration as expiratory muscles. Rhythmical movements in the minor masseter and sternohyoid muscles, which act as inspiratory muscles in gorge respiration, were depressed by the water stimulation of the oral mucosa. These findings indicate that the water receptor plays a role in the interruption of gorge respiratory movements, accompanied by an elevation of buccal pressure.  相似文献   
49.
Settlement of male great reed warblers in the breeding ground was highly asynchronous at Lake Biwa in Japan. It took over 1 month from the appearance of the first male to a saturation in number of males. In resource-defense-polygyny, males are expected to try to defend as large an area as possible in the optimal habitat. In fact, a small number of the earliest settling males divided up the breeding ground almost completely as territories among themselves and these were later reduced in size with the addition of later settlers. The reduction was not due to a seasonal decline of aggressiveness on the part of the owners but to a higher level of intrusion pressure by later arriving males. The neighbor-neighbor relationship, once established, was rather stable. Home range overlap was small and territorial contacts were few between neighbors. Territorial boundaries seem not to shift despite the addition of new males as long as the neighbors were the same. The stable relationships between neighbors are expected to help the earlier resident to maintain his large and good territories throughout the breeding season and hence polygyny is favored in this species.  相似文献   
50.
Abstract Midday water potentials of blades of the dune grasses Ammophila arenaria (L.) Link and Elymus mollis Trin. ex Spreng. growing in situ declined over the summer growing period, indicating a trend of increasing water stress. An analysis of the water relations characteristics of these blades using pressure-volume techniques demonstrated that both species increased bulk osmotic pressure at full hydration () and, therefore, bulk turgor as an acclimation response. In A. arenaria, however, the increase of osmotic pressure (+ 0.35 MPa) was entirely the result of decreasing symplasmic water content. The increase of osmotic pressure (+ 0.54 MPa) observed in E. mollis blades was due to solute accumulation (72% of Δ) and to a lesser degree, decreased symplasmic water content (28% of Δ). Osmotic adjustment in E. mollis blades was accompanied by a significant decrease in tissue elasticity (max went from 12 to 19 MPa). The elastic properties of A. arenaria blades remained constant over the same period and had a maximum modulus (10 MPa) that was always less than that of E. mollis, As estimated from Höfler plots, these seasonal adjustments of osmotic pressure and differences in tissue elasticity enabled plants in situ to maintain turgor pressure in the range of 0.5–0.6 MPa at the lowest water potentials of mid-August. Laboratorygrown plants exhibited the species-specific differences in osmotic pressure, turgor pressure, and tissue elasticity observed in field plants. Although certain alterations of leaf structure were expected to coincide with the observed changes and species-specific differences in symplasmic water content and tissue elasticity, these could not be detected by measurements of specific leaf weight or the ratio of dry matter to saturated water content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号