首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5193篇
  免费   200篇
  国内免费   200篇
  2023年   73篇
  2022年   70篇
  2021年   118篇
  2020年   121篇
  2019年   196篇
  2018年   182篇
  2017年   139篇
  2016年   168篇
  2015年   105篇
  2014年   200篇
  2013年   608篇
  2012年   104篇
  2011年   208篇
  2010年   109篇
  2009年   190篇
  2008年   195篇
  2007年   192篇
  2006年   207篇
  2005年   170篇
  2004年   146篇
  2003年   168篇
  2002年   156篇
  2001年   112篇
  2000年   90篇
  1999年   92篇
  1998年   100篇
  1997年   71篇
  1996年   91篇
  1995年   73篇
  1994年   92篇
  1993年   79篇
  1992年   78篇
  1991年   67篇
  1990年   45篇
  1989年   63篇
  1988年   44篇
  1987年   52篇
  1986年   46篇
  1985年   76篇
  1984年   90篇
  1983年   68篇
  1982年   80篇
  1981年   65篇
  1980年   57篇
  1979年   41篇
  1978年   26篇
  1977年   18篇
  1976年   16篇
  1974年   7篇
  1973年   12篇
排序方式: 共有5593条查询结果,搜索用时 15 毫秒
71.
Thyroid Hormones and Derivatives Inhibit Flunitrazepam Binding   总被引:1,自引:1,他引:0  
Thyroid hormones and their derivatives were found to inhibit [3H]flunitrazepam binding stereospecifically and in a monophasic manner. Among the compounds tested, D-thyroxine was the most potent inhibitor (IC50 = 0.5 microM). The naturally occurring L-thyroxine was about 40-fold less potent (IC50 = 20 microM). The structure-activity relationships seem to imply that the thyronine base has the principal role in the inhibition of benzodiazepine receptor binding. The type of inhibition was examined with the most potent inhibitor, D-thyroxine, by Scatchard analysis. The apparent dissociation constant (KD) of the [3H]flunitrazepam binding increased and the receptor density (Bmax) decreased as a function of D-thyroxine concentration; this is characteristic of mixed-type inhibition.  相似文献   
72.
Homoserine kinase is a potential control point in the biosynthetic pathway for threonine, isoleucine and methionine. The radish leaf enzyme was tested  相似文献   
73.
Ethylene production was determined in excised tomato (Lycopersicon esculentum) root cultures of Meloidogyne javanica susceptible and resistant cultivars infected with M. javanica. Uninfected cultivars produced very low amounts of ethylene. Relatively high amounts of ethylene were produced by the infected susceptible cultivars. Peak production of 1.6 n moles * g root⁻¹ * h¹⁻ occurred between 9 and 16 days after inoculation (DAI). The period of high ethylene production coincided with that of rapid increase in gall weight. Low amounts of ethylene were also released by the infected resistant cultivar between 9 and 12 DAI, which follows the hypersensitivity reaction. Ethylene production in infected intact plants during the period of rapid gall growth was twice as much as in uninfected plants during the same time. Exposing excised root cultures to 0.5 or l0 ppm ethylene accelerated the rate of increase in gall weight of M. javanica infected roots. In contrast, overall root growth was inhibited by these treatments, compared to infected roots which were not exposed to ethylene.  相似文献   
74.
It has been known for some time that pokeweed antiviral protein acts by enzymatically inhibiting protein synthesis on eucaryotic ribosome systems. The site of this action is known to be the ribosome itself. In this paper we show that the pokeweed antiviral protein reaction against ribosomes is a strong function of salt concentrations, where 160 mM K+ and 3 mM Mg2+ retards the reaction, while 20 mM K+ and 2 mM Mg2+ allows maximum reaction rate. It is also shown, however, that an unidentified protein in the postribosomal supernatant solution, together with ATP, allows the ribosome to be attacked even in the presence of high salt. Kinetic analysis of the antiviral protein reaction has been carried out under both sets of conditions, and reveals that the turnover number for the enzyme is about 300–400 mol/mol per min. in each case. The Km for ribosomes is 1 μM in the presence of low salt and 0.2 μM at higher salt in the presence of postribosomal supernatant factors plus ATP. The antiviral protein reaction is also shown to be pH dependent and is controlled by a residue with pKa value of approx. 7.0, apparently a histidine. Stoichiometric reaction of the enzyme with iodoacetamide results in a significant loss of antiribosomal activity.  相似文献   
75.
Dipicolinic acid synthesis inPenicillium citreoviride strain 3114 was inhibited by Ca2+ ions, but not by Ba2+, Cu2+or Fe2+. Among the metals tested, only Zn2+ inhibited the synthesis of dipicolinic acid and promoted sporulation. None of these metals reversed the inhibition by Ca2+ or Zn2+. A mutant 27133-dpa-ca selected for resistance to feedback inhibition by dipicolinic acid: Ca2+ complex showed cross-resistance to inhibition by dipicolinic acid: Zn2+. Both 3114 and271 33-dpa-ca excreted a number of aliphatic and amino acids during secondary metabolism of dipicolinic acid. In the presence of 1000 ppm of Ca2+, accumulation of citric acid and α-aminoadipic acid was completely inhibited under conditions of inhibition of dipicolinic acid in parent strain 3114 but not in the mutant. Citric acid with or without Ca2+ did not inhibit thede novo synthesis of dipicolinic acid in the strain 3114. In fact, citric acid in the presence of Ca2+ improved significantly rate of dipicolinic acid synthesis. Apart from resistance to feed back inhibition by dipicolinic acid: Ca2+ complex, mutant differed from the parent in three other aspectsviz. (i) dipicolinic acid synthesis was not subject to catabolite repression by glucose, (ii) sporulation as well as dipicolinic acid synthesis was dependent on the presence of Ca2+ ions in the medium and (iii) Mg2+ requirement for the mutant increased three fold. Higher requirement of the Mg2+ could be partially relieved by Ca2+ during secondary metabolism. The results support the inference thatde novo synthesis of dipicolinic acid is regulated through feedback inhibition by dipicolinic acid: Ca2+complex.  相似文献   
76.
The inhibiting effect of 14 typical creosote compounds on the aerobic degradation of toluene was studied in batch experiments. Four NSO-compounds (pyrrole, 1-methylpyrrole, thiophene, and benzofuran) strongly inhibited the degradation of toluene. When the NSO-compounds were present together with toluene, little or no degradation of toluene was observed during 16 days of incubation, compared with a total removal of toluene within 4 days when the four compounds were absent. Indole (an N-compound) and three phenolic compounds (phenol, o-cresol, and 2,4-dimethylphenol) also inhibited the degradation of toluene, though the effect was much weaker that of the four NSO-compounds. O-xylene, p-xylene, naphthalene and 1-methylnaphthalene seemed to stimulate the degradation even though the influence was very weak. No effects of benzothiophene (an S-compound) and quinoline (an N-compound) were observed. Benzofuran (an O-compound) was identified as the compound that most inhibited the degradation of toluene. An effect could be detected even at low concentrations (40 g/l).Abbreviations bf benzofuran - bt benzothiophene - dmp 2,4-dimethylphenol - GC gas chromatograph - ind indole - mnap 1-methylnaphthalene - MAH monoaromatic hydrocarbons - mpyr 1-methylpyrrole - nap naphthalene - o-cre o-cresol - o-xyl o-xylene - phe phenol - pyr pyrrole - p-xyl p-xylene - tol toluene - thi thiophene - qui quinoline  相似文献   
77.
Summary We evaluated the effects of vawrying aqueous Cl concentrations, and of the arginyl- and lysyl-specific reagent phenylglyoxal (PGO), on the properties of Cl channels fused from basolaterally enriched renal medullary vesicles into planar lipid bilayers. The major channel properties studied were the anion selectivity sequence, anionic requirements for, channel activity. and the efects of varying Cl concentrations and/or PGO on the relation between holding voltageV H -mV) and open-time probability (P o).Reducingcis Cl concentrations, in the range 50–320mm, produced a linear reduction in fractional open time (P v) with a half-maximal reduction inP o atcis Cl170mM. Channel activity was sustained by equimolar replacement ofcis Cl with F, but not with impermeant isethionate. Fortrans solutions, the relation between Cl concentration andP 0 at 10mm Cl. Reducingcis Cl had no effect on the gating charge (Z) for channel opening, but altered significantly the voltage-independent, energy (G) for channel opening.Phenylglyoxal (PGO) reducedZ and altered G for Cl channel activity when added tocis, but nottrans solutions, Furthermore, in the presence ofcis PGO, reducing thecis Cl concentration had no effect onZ but altered G. Thus we propose thatcis PGO and,cis Cl concentrations affect separate sites determining channel activity at the extracellular faces of, these Cl channels.  相似文献   
78.
Summary Ion: solute cotransporters frequency are incapable of achieving equilibrium between the solute accumulation and the transmembrane difference of the electrochemical potential of the ion. The presence of uncoupled flows of ion and solutes (leaks) is often advanced as an explanation. Here an alternative is discussed. The net accumulation of solute may be so slow that equilibrium can never be attained at finite times (e.g., several hours). Cotransporters may exhibit strong product inhibition, and the net influx of solute approaches zero far from equilibrium. The inherent slowness of net transport under these conditions is termed catalytic inefficiency. The likelihood that galactoside: H+ cotransport inEscherichia coli, hexose: H+ cotransport inChlorella vulgaris, andd-glucose: Na+ cotransport in brush-border membranes exhibit catalytic inefficiency is examined. The existence of strong product inhibition complicates the determination of the stoichiometry of cotransport and the characterization of chemically modified or mutant cotransporters.  相似文献   
79.
Summary To characterize the molecular properties conveyed by the isoforms of the subunit of Na,K-ATPase, the two major transepithelial transporting organs in the brine shrimp (Artemia salina), the salt glands and intestines, were isolated in pure form. The isoforms were quantified by ATP-sensitive fluorescein isothiocyanate (FITC) labeling. The salt gland enzyme exhibits only the 1 isoform, whereas the intestinal enzyme exhibits both the 1 and the 2 isoforms. After 32 hours of development, Na,K-ATPase activity [in mol Pi/mg protein/hr (1u)] in whole homogenates was 32±6 in the salt glands and 12±3 in the intestinal preparations (mean±sem). The apparent half-maximal activation constants (K 1/2) of the salt gland enzyme as compared to the intestinal enzyme were 3.7±0.6mm vs. 23.5±4mm (P<0.01) for Na+, 16.6±2.2mm vs. 8.29±1.5mm for K+ (P<0.01), and 0.87±0.8mm vs. 0.79±1.1mm for ATP (NS). The apparentK i's for ouabain inhibition were 1.1×10–4 m vs. 2×10–5 m, respectively. Treatment of whole homogenates with deoxycholic acid (DOC) produced a maximal Na,K-ATPase activation of 46% in the salt gland as compared to 23% in the intestinal enzyme. Similar differences were found with sodium dodecyl sulfate (SDS). The two distinct forms of Na,K-ATPase isolated from the brine shrimp differed markedly in three kinetic parameters as well as in detergent sensitivity. The differences inK 1/2 for Na+ and K+ are more marked than those reported for the mammalian Na,K-ATPase isoforms. These differences may be attributed to the relative abundances of the subunit isoforms; other potential determinants (e.g. differences in membrane lipids), however, have not been investigated.During the tenure of an Educational Commission For Foreign Medical Graduates Visiting Associate Professorship.  相似文献   
80.
谢麟阁 《动物学报》1989,35(3):274-278
作者采用简单的螺胚生长抑制法,证明软体动物细胞具有DNA复制后修复功能,并受咖啡碱抑制。在没有其他诱变剂的参与下,咖啡碱并不损伤DNA,但也没有保护作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号