首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22649篇
  免费   1842篇
  国内免费   1719篇
  2024年   121篇
  2023年   547篇
  2022年   657篇
  2021年   907篇
  2020年   947篇
  2019年   1109篇
  2018年   950篇
  2017年   869篇
  2016年   877篇
  2015年   1118篇
  2014年   1363篇
  2013年   2092篇
  2012年   944篇
  2011年   1083篇
  2010年   754篇
  2009年   1232篇
  2008年   1264篇
  2007年   1227篇
  2006年   1128篇
  2005年   907篇
  2004年   853篇
  2003年   706篇
  2002年   579篇
  2001年   479篇
  2000年   407篇
  1999年   372篇
  1998年   349篇
  1997年   357篇
  1996年   272篇
  1995年   226篇
  1994年   200篇
  1993年   197篇
  1992年   165篇
  1991年   146篇
  1990年   122篇
  1989年   103篇
  1988年   92篇
  1987年   78篇
  1986年   68篇
  1985年   77篇
  1984年   51篇
  1983年   33篇
  1982年   58篇
  1981年   42篇
  1980年   30篇
  1979年   19篇
  1978年   11篇
  1977年   7篇
  1976年   5篇
  1975年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
《Free radical research》2013,47(6-7):451-462
Abstract

Aging and neurodegenerative diseases share oxidative stress cell damage and depletion of endogenous antioxidants as mechanisms of injury, phenomena that are occurring at different rates in each process. Nevertheless, as the central nervous system (CNS) consists largely of lipids and has a poor catalase activity, a low amount of superoxide dismutase and is rich in iron, its cellular components are damaged easily by overproduction of free radicals in any of these physiological or pathological conditions. Thus, antioxidants are needed to prevent the formation and to oppose the free radicals damage to DNA, lipids, proteins, and other biomolecules. Due to endogenous antioxidant defenses are inadequate to prevent damage completely, different efforts have been undertaken in order to increase the use of natural antioxidants and to develop antioxidants that might ameliorate neural injury by oxidative stress. In this context, natural antioxidants like flavonoids (quercetin, curcumin, luteolin and catechins), magnolol and honokiol are showing to be the efficient inhibitors of the oxidative process and seem to be a better therapeutic option than the traditional ones (vitamins C and E, and β-carotene) in various models of aging and injury in vitro and in vivo conditions. Thus, the goal of the present review is to discuss the molecular basis, mechanisms of action, functions, and targets of flavonoids, magnolol, honokiol and traditional antioxidants with the aim of obtaining better results when they are prescribed on aging and neurodegenerative diseases.  相似文献   
42.
Comparative two-dimensional electrophoresis showed six proteins, which were significantly produced in the root of salt-tolerant barley. These proteins were identified as stress/defense-related proteins that do not scavenge reactive oxygen species directly, suggesting that salt-tolerant barley develops not only an antioxidative system, but also physical and biochemical changes to cope with salt stress.  相似文献   
43.
44.
45.
《Cell》2022,185(20):3753-3769.e18
  1. Download : Download high-res image (311KB)
  2. Download : Download full-size image
  相似文献   
46.
47.
Abstract

The role of hemoglobin in transporting oxygen is dependent on the reversible binding of oxygen to Fe(II) hemoglobin with molecular oxygen released at reduced oxygen pressures. The partially oxygenated hemoglobin formed with the release of oxygen from hemoglobin is susceptible to redox reactions where the functional Fe(II) heme is oxidized to Fe(III) and the substrate is reduced. In this article, we review two important redox reactions of hemoglobin and discuss the ramifications of these reactions. The reduction of oxygen to superoxide starts a cascade of oxidative reactions, which are a source for red cell-induced oxidative stress. The reduction of nitrite to nitric oxide produces a labile form of nitric oxide that can be a source for oxidative stress, but can also have important physiological functions.  相似文献   
48.
《Theriogenology》2015,84(9):1402-1407
High ambient temperature during summer in tropical and subtropical countries predisposes water buffaloes (Bubalus bubalis) to develop oxidative stress having antigonadotropic and antisteroidogenic actions. Melatonin is a regulator of seasonal reproduction in photoperiodic species and highly effective antioxidant and free radical scavenger. Therefore, a study was designed to evaluate the effect of sustained-release melatonin on biomarkers of oxidative stress i.e., the serum malondialdehyde (MDA) and nitric oxide (NO), and the total antioxidant capacity (TAC). For the study, postpartum buffaloes diagnosed as summer anestrus (absence of overt signs of estrus, concurrent rectal examination, and RIA for serum progesterone) were grouped as treated (single subcutaneous injection of melatonin at 18 mg/50 kg body weight dissolved in sterilized corn oil as vehicle, n = 20) and untreated (subcutaneous sterilized corn oil, n = 8). Blood sampling for estimation of serum TAC and MDA (mmol/L) and NO (μmol/L) was carried out at 4 days of interval from 8 days before treatment till 28 days after treatment or for the ensuing entire cycle length. Results showed serum TAC concentration was higher in the treatment group with a significant (P < 0.05) increasing trend, whereas MDA and NO revealed a significant (P < 0.05) decline. Serum MDA and NO were higher in control compared with those of treatment group. Moreover, buffaloes in the treatment group showed 90% estrus induction with 18.06 ± 1.57 days mean interval from treatment to the onset of estrus. These results report that melatonin has a protective effect by elevating antioxidant status and reducing oxidative stress resulting in the induction of cyclicity in summer-stressed anestrous buffaloes.  相似文献   
49.
50.
Differential chilling sensitivity in cucumber (Cucumis sativus) seedlings   总被引:3,自引:0,他引:3  
Cucumber ( Cucumis sativus L. cv. Poinsett 76) seeds were chilled at 2.5°C in a study of the chilling sensitivity and recovery of radicle tissue. The effect of chilling on radicle growth and the production of carbon dioxide and ethylene was measured. Chilling sensitivity of radicles increased as they grew from 1 to 7 mm in length. The length, not the age of the radicles, determined the level of chilling sensitivity. Apical tissue was most sensitive to chilling and slowest to recover from chilling, followed by subapical and basal tissue. Our data demonstrate that the chilling sensitivity of young seedling radicles differs along their length and that the rapid chilling-induced inhibition of elongation is probably due to an inability of meristematic cells to remain viable and active when chilled.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号