首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   429篇
  免费   36篇
  国内免费   35篇
  2024年   3篇
  2023年   8篇
  2022年   8篇
  2021年   11篇
  2020年   4篇
  2019年   7篇
  2018年   5篇
  2017年   18篇
  2016年   7篇
  2015年   15篇
  2014年   17篇
  2013年   25篇
  2012年   9篇
  2011年   9篇
  2010年   8篇
  2009年   21篇
  2008年   13篇
  2007年   17篇
  2006年   20篇
  2005年   14篇
  2004年   12篇
  2003年   11篇
  2002年   15篇
  2001年   10篇
  2000年   15篇
  1999年   22篇
  1998年   12篇
  1997年   18篇
  1996年   9篇
  1995年   13篇
  1994年   10篇
  1993年   11篇
  1992年   17篇
  1991年   11篇
  1990年   8篇
  1989年   3篇
  1988年   10篇
  1987年   6篇
  1986年   7篇
  1985年   11篇
  1984年   8篇
  1983年   2篇
  1982年   6篇
  1981年   3篇
  1980年   4篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
排序方式: 共有500条查询结果,搜索用时 15 毫秒
11.
Summary Triploids (2n=3X=60) were obtained from genetic male-sterile (ms1 ms1) soybean [Glycine max (L.) Merr.] plants. Meiosis, pollen fertility, and chromosome number of their progeny were studied. Studies of meiosis in fertile and sterile triploids revealed no distinguishable differences in chromosome associations. Male-sterile plants formed coenocytic microspores characteristic of the ms1 mutant. Restitution of some dyad and tetrad nuclei were observed in male-sterile plants. Chromosomes of the triploids tended to occur in trivalents during diakinesis and metaphase I (MI), but multivalents, bivalents, and univalents also were observed. Average types and frequencies of chromosome associations per cell in diakinesis and MI from 542 pollen mother cells were 0.004 IX + 0.06 VI + 0.002 V + 0.005 IV + 16.99 III + 1.79 II + 5.03 I. Some secondary associations, nonhomologous pairing, and aberrant nucleolar distributions occasionally were observed. Such behavior support the hypothesis of duplicated genomes and the polyploid origin of soybean. Pollen fertility in male-fertile triploid plants (Ms1 ms1 ms1) varied from 57% to 82%, with an average of about 71%. Chromosome numbers of progenies obtained from these fertile triploids varied from 2n=40 to 2n=71, and exhibited a near-random distribution, with the majority (about 60%) being between 56 and 65. Progenies of the fertile triploids gave segregation ratios for the ms1 allele, which confirmed the Ms1 ms1 ms1 genotype.Joint contribution: Agricultural Research Service, U.S. Department of Agriculture, and Journal Paper No. J-11672 of the Iowa Agriculture and Home Economics Experiment Station, Ames, IA 50011, USA, Project 2471  相似文献   
12.
Summary Two F5 strains of tetraploid triticale (2n= 4x=28), obtained from 6x triticaleX2 rye progenies, were crossed with diploid and tetraploid rye, some durum and bread wheats, and various 8x and 6x triticale lines. Meiosis in the different hybrid combinations was studied. The results showed that the haploid complement of these triticales consists of seven chromosomes from rye and seven chromosomes from wheat. High frequencies of PMCs showing trivalents were observed in hybrids involving the reference genotypes of wheat and triticale. These findings proved that several chromosomes from the wheat component have chromosome segments coming from two parental wheat chromosomes. The origin of these heterogeneous chromosomes probably lies in homoeologous pairing occurring at meiosis in the 6x triticaleX2x rye hybrids from which 4x triticale lines were isolated. A comparison among different hybrids combinations indicated that the involvement of D-genome chromosomes in homoeologous pairing is quite limited. In contrast, meiotic patterns in 4x triticale X 2x rye hybrids showed a quite high pairing frequency between some R chromosomes and their A and B homoeologues.  相似文献   
13.
Summary Autotetraploids were established from 8 diploid wild species of section Arachis. In all the autotetraploids the chromosomes paired largely as bivalents even though they possess the ability to pair as multivalents. Pollen and pod fertility in the C1 generation were not directly associated with chromosome pairing. The C2 generation autotetraploids showed a gradual increase in bivalent associations and pollen and pod fertility. The identification of two genomes, A and B, in the diploid species and in the tetraploid, A. hypogaea, of the section Arachis, a fairly good crossability, and the type of chromosome associations observed in hybrids between A. hypogaea and the autotetraploids of wild Arachis species indicated good prospects of utilizing autotetraploids as genetic bridges in transferring desired traits from these taxa into groundnut.Submitted as Journal Article No. 516 by International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)  相似文献   
14.
Summary Synthetic amphidiploids were established in 32 combinations involving 8 diploid wild species representing both A and B genomes of section Arachis. Bivalent and multivalent associations in the amphidiploids of 7 A genome species confirm that these species have identical genomes. Contrastingly, high bivalent frequencies in amphidiploids involving the A and B genome species suggest that A. batizocoi has a distinct B genome that is partially homologous to the other genome A represented in the rest of the species. Crossability, chromosome pairing and pollen and pod fertility in hybrids between A. hypogaea and amphidiploids have revealed that these amphidiploids can be used as a genetic bridge for the transfer of genes from the wild species into the cultivated groundnut.Submitted as Journal Article No. 530 by International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)  相似文献   
15.
Summary Intergeneric hybrids were produced between common wheat, Triticum aestivum (2n=6x=42, AABBDD) and wheatgrass, Etymus caninus (Agropyron caninum) (2n=4x=28, SSHH) — the first successful report of this cross. Reciprocal crosses and genotypes differed for percent seed set, seed development and F1 hybrid plant production. With E. caninus as the pollen parent, there was no hybrid seed set. In the reciprocal cross, seed set was 23.1–25.4% depending upon wheat genotype used. Hybrid plants were produced only by rescuing embryos 12–13 days post pollination with cv Chinese Spring as the wheat parent. Kinetin in the medium facilitated embryo germination but inhibited root development and seedling growth. The hybrids were vigorous, self sterile, and intermediate between parents. These had expected chromosome number (2n=5x=35, ABDSH), very little chromosome pairing (0.51 II, 0.04 III) and some secondary associations. The hybrids were successfully backcrossed with wheat. Chromosome number in the BC1 derivatives varied 54–58 with 56 as the modal class. The BC1 derivatives showed unusually high number of rod bivalents or reduced pairing of wheat homologues. These were sterile and BC2 seed was produced using wheat pollen.  相似文献   
16.
Nine accessions ofVicia narbonensis, considered to be the wild progenitor of faba bean (Vicia faba), were investigated to ascertain the nature and extent of intraspecific karyotypic polymorphism. The chromosome complements resolved into four distinct types (A, B, C, D), and the meiotic data of F1 hybrids (A × B, B × C, A × C) revealed that alteration in chromosome morphology is the result of segmental interchanges. The interchange complexes indicate that the parents differ from each other by 1 to 2 interchanges. It is also evident that karyotype B, and not A as previously reported, is the normal karyotype of the species, and A and C are single homozygotes for unequal interchange. The comparative karyomorphology of the parents and the hybrids, and of two interchange heterozygotes of four chromosomes each in F1 hybrids of A × C shows that the chromosomes involved in the single interchange homozygotes (A, C) are not common and the breaks in both interchanges occurred in short and long arms of the involved chromosomes. Identification of the interchanged chromosomes in the complements and the frequency of ring and chain quadrivalents in the heterozygotes enabled location of the breakpoints. The present results provide probably the first example indicating that interchange homozygosity (A) is not only firmly established but also has enabled the species to spread further by adapting to a wide range of habitats. — The genetic relationships between A and D are very different. All seven chromosome pairs in D could be distinguished from A, and for that matter, B and C as well. From the meiotic pairing properties it is also amply clear that genome D is well differentiated from A and possibly B, and C, and deserves special status.  相似文献   
17.
For the transfer of genes from B. tournefortii (TT) to the allotetraploid oilseed brassicas, B. juncea AABB, B. carinata BBCC and B. napus AACC, B. tournefortii was first crossed with the three basic diploid species, B. campestris (AA), B. nigra (BE) and B. oleracea (CC), to produce the allodiploids TA, TB and TC. These were tetraploidized by colchicine treatment to produce the allotetraploids TTAA, TTBB and TTCC, which were further crossed with B. juncea and B. napus to produce three-genome hybrids with substitution-type genomic configurations: TACC, TBAA and TCAA. These hybrids along with another hybrid TCBB produced earlier, the three allodiploids, their allotetraploids and the four diploid parent species were studied for their male meiotic behaviour. The diploid parent and the allotetraploids (TTAA, TTBB and TTCC) showed regular meiosis although the pollen viability was generally low in the allotetraploids. In the allodiploids (TA, TB and TC) only some end-to-end associations were observed without any clearly discernible chiasmata or exchange points. Chromosomes involved in end-to-end associations were randomly distributed at the metaphase/anaphase-I stages. In contrast, the three-genome hybrids (TACC, TBAA, TCAA and TCBB) showed normal bivalents whose number exceeded the expected bivalent values. Bivalents arising out of homoeologous pairing were indistinguishable from normal pairs by their disjunction pattern but could be distinguished on the basis of the heteromorphy of the homoeologous chromosomes. The three-genome hybrids could be backcrossed to allotetraploid oilseed brassicas as they had some fertility. In contrast, the allodiploids could neither be selfed nor back-crossed. On the basis of their meiotic stability, in terms of more pronounced homoeologous pairing and fertility for backcrossing, the three-genome configurations provide the best possible situation for the introgression of alien genes from the secondary gene pool to the allotetraploid oilseed crops B. juncea, B. napus and B. carinata.  相似文献   
18.
Wheat-rye chromosome associations at metaphase I studied by Naranjo and Fernández-Rueda (1991) in ph1b ABDR hybrids have been reanalysed to establish the frequency of pairing between individual chromosomes of wheat and rye. Wheat chromosomes, except for 2A and 2D, and their arms were identified by C-banding. Diagnostic C-bands and other cytological markers such as telocentrics or translocations were used to identify each one of the rye chromosomes and their arms. Both the amount of telomeric C-heterochromatin and the structure of the rye chromosomes relative to wheat affected the level of wheatrye pairing. The degree to which rye chromosomes paired with their wheat homoeologues varied with each of the three wheat genomes; in most groups, the B-R association was more frequent than the A-R or D-R associations. Recombination between arms 1RL and 2RL and their homoeologues of wheat possessing a different telomeric C-banding pattern was detected and quantified at anaphase I. The frequency of recombinant chromosomes obtained supports the premise that recombination between wheat and rye chromosomes may be estimated from wheat-rye pairing.  相似文献   
19.
Diploid-like chromosome pairing in polyploid wheat is controlled by several Ph (pairing homoeologous) genes with major and minor effects. Homoeologous pairing occurs in either the absence of these genes or their inhibition by genes from other species (Ph I genes). We transferred Ph I genes from Triticum speltoides (syn Aegilops speltoides) to T. aestivum, and on the basis of further analysis it appears that two duplicate and independent Ph I genes were transferred. Since Ph I genes are epistatic to the Ph genes of wheat, homoeologous pairing between the wheat and alien chromosomes occurs in the F1 hybrids. Using the Ph I gene stock, we could demonstrate homoeologous pairing between the wheat and Haynaldia villosa chromosomes. Since homoeologous pairing occurs in F1 hybrids and no cytogenetic manipulation is needed, the Ph I gene stock may be a versatile tool for effecting rapid and efficient alien genetic transfers to wheat.Contribution no. 93-435-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, KS 66506-5502, USA  相似文献   
20.
In order to elucidate the possible effects of rye B chromosomes (Bs) on synapsis and metaphase-I associations of the A set, a comparative study between pachytene and metaphase-I-cells of rye plants carrying different numbers of Bs (0–8) has been carried out. The number of Bs was found to be positively correlated with the frequency of synaptic irregularities of the A set, i.e. multivalents and foldback pairing, and with the frequency of pachytene interlockings. It is proposed that interlockings are the origin of these irregularities because both appeared in close proximity in many nuclei. Examples of A-B pairing are described. The frequency of synaptic abnormalities seems to be unrelated to the mean of A chromosome-bound arms at metaphase I.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号