首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1354篇
  免费   190篇
  国内免费   21篇
  1565篇
  2024年   5篇
  2023年   27篇
  2022年   17篇
  2021年   40篇
  2020年   61篇
  2019年   72篇
  2018年   60篇
  2017年   77篇
  2016年   71篇
  2015年   70篇
  2014年   90篇
  2013年   106篇
  2012年   48篇
  2011年   63篇
  2010年   63篇
  2009年   72篇
  2008年   72篇
  2007年   70篇
  2006年   46篇
  2005年   54篇
  2004年   40篇
  2003年   36篇
  2002年   34篇
  2001年   26篇
  2000年   25篇
  1999年   44篇
  1998年   24篇
  1997年   20篇
  1996年   10篇
  1995年   16篇
  1994年   14篇
  1993年   11篇
  1992年   12篇
  1991年   11篇
  1990年   11篇
  1989年   9篇
  1988年   9篇
  1987年   4篇
  1986年   3篇
  1985年   9篇
  1984年   7篇
  1982年   3篇
  1980年   1篇
  1978年   1篇
  1971年   1篇
排序方式: 共有1565条查询结果,搜索用时 8 毫秒
41.
Many studies have demonstrated that the nonconsumptive effect (NCE) of predators on prey traits can alter prey demographics in ways that are just as strong as the consumptive effect (CE) of predators. Less well studied, however, is how the CE and NCE of multiple predator species can interact to influence the combined effect of multiple predators on prey mortality. We examined the extent to which the NCE of one predator altered the CE of another predator on a shared prey and evaluated whether we can better predict the combined impact of multiple predators on prey when accounting for this influence. We conducted a set of experiments with larval dragonflies, adult newts (a known keystone predator), and their tadpole prey. We quantified the CE and NCE of each predator, the extent to which NCEs from one predator alters the CE of the second predator, and the combined effect of both predators on prey mortality. We then compared the combined effect of both predators on prey mortality to four predictive models. Dragonflies caused more tadpoles to hide under leaf litter (a NCE), where newts spend less time foraging, which reduced the foraging success (CE) of newts. Newts altered tadpole behavior but not in a way that altered the foraging success of dragonflies. Our study suggests that we can better predict the combined effect of multiple predators on prey when we incorporate the influence of interactions between the CE and NCE of multiple predators into a predictive model. In our case, the threat of predation to prey by one predator reduced the foraging efficiency of a keystone predator. Consequently, the ability of a predator to fill a keystone role could be compromised by the presence of other predators.  相似文献   
42.
A predator–prey discrete-time model with Holling-IV functional response and distributed delays is investigated in this paper. By using the comparison theorem of the difference equation and some analysis technique, some sufficient conditions are obtained for the permanence of the discrete predator–prey system. Two examples are given to illustrate the feasibility of the obtained result.  相似文献   
43.
Future climate change is likely to affect distributions of species, disrupt biotic interactions, and cause spatial incongruity of predator–prey habitats. Understanding the impacts of future climate change on species distribution will help in the formulation of conservation policies to reduce the risks of future biodiversity losses. Using a species distribution modeling approach by MaxEnt, we modeled current and future distributions of snow leopard (Panthera uncia) and its common prey, blue sheep (Pseudois nayaur), and observed the changes in niche overlap in the Nepal Himalaya. Annual mean temperature is the major climatic factor responsible for the snow leopard and blue sheep distributions in the energy‐deficient environments of high altitudes. Currently, about 15.32% and 15.93% area of the Nepal Himalaya are suitable for snow leopard and blue sheep habitats, respectively. The bioclimatic models show that the current suitable habitats of both snow leopard and blue sheep will be reduced under future climate change. The predicted suitable habitat of the snow leopard is decreased when blue sheep habitats is incorporated in the model. Our climate‐only model shows that only 11.64% (17,190 km2) area of Nepal is suitable for the snow leopard under current climate and the suitable habitat reduces to 5,435 km2 (reduced by 24.02%) after incorporating the predicted distribution of blue sheep. The predicted distribution of snow leopard reduces by 14.57% in 2030 and by 21.57% in 2050 when the predicted distribution of blue sheep is included as compared to 1.98% reduction in 2030 and 3.80% reduction in 2050 based on the climate‐only model. It is predicted that future climate may alter the predator–prey spatial interaction inducing a lower degree of overlap and a higher degree of mismatch between snow leopard and blue sheep niches. This suggests increased energetic costs of finding preferred prey for snow leopards – a species already facing energetic constraints due to the limited dietary resources in its alpine habitat. Our findings provide valuable information for extension of protected areas in future.  相似文献   
44.
Comprehension of ecological processes in marine animals requires information regarding dynamic vertical habitat use. While many pelagic predators primarily associate with epipelagic waters, some species routinely dive beyond the deep scattering layer. Actuation for exploiting these aphotic habitats remains largely unknown. Recent telemetry data from oceanic whitetip sharks (Carcharhinus longimanus) in the Atlantic show a strong association with warm waters (>20°C) less than 200 m. Yet, individuals regularly exhibit excursions into the meso‐ and bathypelagic zone. In order to examine deep‐diving behavior in oceanic whitetip sharks, we physically recovered 16 pop‐up satellite archival tags and analyzed the high‐resolution depth and temperature data. Diving behavior was evaluated in the context of plausible functional behavior hypotheses including interactive behaviors, energy conservation, thermoregulation, navigation, and foraging. Mesopelagic excursions (= 610) occurred throughout the entire migratory circuit in all individuals, with no indication of site specificity. Six depth‐versus‐time descent and ascent profiles were identified. Descent profile shapes showed little association with examined environmental variables. Contrastingly, ascent profile shapes were related to environmental factors and appear to represent unique behavioral responses to abiotic conditions present at the dive apex. However, environmental conditions may not be the sole factors influencing ascents, as ascent mode may be linked to intentional behaviors. While dive functionality remains unconfirmed, our study suggests that mesopelagic excursions relate to active foraging behavior or navigation. Dive timing, prey constituents, and dive shape support foraging as the most viable hypothesis for mesopelagic excursions, indicating that the oceanic whitetip shark may regularly survey extreme environments (deep depths, low temperatures) as a foraging strategy. At the apex of these deep‐water excursions, sharks exhibit a variable behavioral response, perhaps, indicating the presence or absence of prey.  相似文献   
45.
Species trait data have been used to predict and infer ecological processes and the responses of biological communities to environmental changes. It has also been suggested that, in lieu of trait, data niche differences can be inferred from phylogenetic distance. It remains unclear how variation in trait data may influence the strength and character of ecological inference. Using species‐level trait data in community ecology assumes intraspecific variation is small in comparison with interspecific variation. Intraspecific variation across species ranges or within populations may lead to variability in trait data derived from different scales (i.e., local or regional) and methods (i.e., mean or maximum values). Variation in trait data across species can affect community‐level relationships. I examined variability in body size, a key trait often measured across taxa. I collected 12 metrics of fish species length (including common and maximum values) for 40 species from literature, online databases, museum collections, and field data. I then tested whether different metrics of fish length could consistently predict observed species range boundary shifts and the impacts of an introduced predator on inland lake fish communities across Ontario, Canada. I also investigated whether phylogenetic signal, an indicator of niche‐conservativism, changed among measures. I found strong correlations between length metrics and limited variation across metrics. Accordingly, length was a consistently significant predictor of the response of fish communities to environmental change. Additionally, I found significant evidence of phylogenetic signal in fish length across metrics. Limited variation in length across metrics (within species), in comparison with variation within metrics (across species), made fish species length a reliable predictor at a community‐level. When considering species‐level trait data from different sources, researchers should examine the potential influence of intraspecific trait variation on data derived by different metrics and at different scales.  相似文献   
46.
47.
If we are to make meaningful and measurable progress in restoring New Zealand's biological heritage by 2050, a range of fundamental issues need to be addressed. These relate not just to restoration science but also to building ecosystem resilience in the wider socio‐economic and cultural context within which restoration occurs.  相似文献   
48.
Given the limited resources available for conservation, it is important that the areas to preserve are selected in a cost effective manner. However, the cost effectiveness of the surrogate species strategy (the use of information on one or more species to identify areas of value for other species for which there is no, or more limited, available information) has seldom been evaluated.In this study, we investigate the opportunity cost of setting aside breeding sites of two forest raptor species (the surrogate species) by evaluating their individual and combined contribution to preserve diversity of polypores (wood-decaying fungi) and birds against the contributions of previously established nature reserves. We use numeric optimization models to compare different reserve selection strategies.Site selection based on nest sites of the dominant raptor species was more cost-effective than strategies using sites of the subordinate species or those processes previously used to select nature reserves in Finland. The inclusion of both raptor species in the reserve selection model further improved its performance relative to other approaches. This indicates that the means by which Finnish reserves are selected could be enhanced by including the breeding sites of these, and maybe other species, among the criteria used to select reserves in the future.These results show that information on charismatic and well-surveyed species could be a cost-efficient add-on to help enhance conservation endeavours. Where there is inter-specific competition for biodiverse sites, and using multiple species is costly, basing reserve selection primarily on breeding sites of a dominant species may be the best strategy. However, further work is required to establish the extent to which dominant species are typically better indicators of conservation relevance.  相似文献   
49.
Giant water bugs (Heteroptera: Belostomatidae) are aquatic predators of freshwater habitats, and include ca. 150 species distributed throughout the world's subtropical and tropical areas. They have unique mating systems, which involve female competition, and exhibit paternal care, wherein males attend eggs laid by the females on emergent plants (Lethocerinae) or on their backs (Belostomatinae). I review here the studies on the predator–prey relationships, morphology, migration, mating behavior and conservation of this family of insects.  相似文献   
50.
Functional redundancy can increase the resilience of ecosystem processes by providing insurance against species loss and the effects of abundance fluctuations. However, due to the difficulty of assessing individual species’ contributions and the lack of a metric allowing for a quantification of redundancy within communities, few attempts have been made to estimate redundancy for individual ecosystem processes. We present a new method linking interaction metrics with metabolic theory that allows for a quantification of redundancy at the level of ecosystem processes. Using this approach, redundancy in the predation on aphids and other prey by natural enemies across a landscape heterogeneity gradient was estimated. Functional redundancy of predators was high in heterogeneous landscapes, low in homogeneous landscapes and scaled with predator specialisation. Our approach allows quantifying functional redundancy within communities and can be used to assess the role of functional redundancy across a wide variety of ecosystem processes and environmental factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号