首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1507篇
  免费   198篇
  国内免费   23篇
  2024年   5篇
  2023年   27篇
  2022年   21篇
  2021年   43篇
  2020年   72篇
  2019年   80篇
  2018年   63篇
  2017年   83篇
  2016年   76篇
  2015年   73篇
  2014年   102篇
  2013年   112篇
  2012年   55篇
  2011年   74篇
  2010年   70篇
  2009年   85篇
  2008年   76篇
  2007年   78篇
  2006年   48篇
  2005年   61篇
  2004年   41篇
  2003年   40篇
  2002年   37篇
  2001年   25篇
  2000年   25篇
  1999年   44篇
  1998年   24篇
  1997年   22篇
  1996年   10篇
  1995年   16篇
  1994年   15篇
  1993年   11篇
  1992年   12篇
  1991年   15篇
  1990年   11篇
  1989年   9篇
  1988年   9篇
  1987年   4篇
  1986年   4篇
  1985年   10篇
  1984年   9篇
  1983年   5篇
  1982年   7篇
  1981年   5篇
  1980年   4篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
排序方式: 共有1728条查询结果,搜索用时 15 毫秒
101.
马尾松毛虫幼虫的捕食天敌及其捕食作用的研究   总被引:4,自引:0,他引:4  
石根生  李典谟 《昆虫知识》1998,35(6):336-340
根据林间调查和室内观察资料,分析了江西省万年县不同松林中马尾松毛虫不同发生代别低龄幼虫期的主要捕食天敌种类及数量。结果表明低龄幼虫期捕食无敌有13科31种,其中以蜘蛛类最多,其次为蚂蚁类。不同林型中捕食天敌的种类和数量在年份间代别间均存在一定差异,数量差异尤其显著。在室内研究了几种主要捕食无敌对马尾松毛虫低龄幼虫的捕食作用及其功能反应,结果表明功能反应为S型,由此建立了它们的功能反应模型。  相似文献   
102.
We designed an experiment to test whether two species of aphid feeding on different species of host plant influence each others population dynamics via shared parasitoids (apparent competition) or other indirect processes. Pea aphid ( Acyrthosiphon pisum ) colonies declined faster towards mid-summer when there were nearby colonies of nettle aphid ( Microlophium carnosum ), though the significance of the difference ( P  = 0.06) was just short of the traditional 0.05 level. Observations suggested that parasitoids were not responsible for this difference, however, and that it was highly likely to be caused by aphid-specific predators.  相似文献   
103.
Under natural conditions, both young-of-the-year (YOY; 0+ year) and parr (1+ year) Atlantic salmon Salmo salar exhibited strong antipredator behaviour ( e.g. increase in latency to resume foraging) following the exposure to damage-released chemical alarm cues relative to a stream water control. Subsequent exposure to a novel visual stimulus had contrasting results. Parr increased their reactive distance to the visual stimulus if they had been previously exposed to a chemical alarm cue, whereas YOY did not. On the other hand, both YOY and parr took significantly longer to resume foraging when exposed to a visual stimulus if they had been previously exposed to a chemical alarm cue than control groups. While YOY and parr differed in the type and intensity of antipredator responses to both chemical and visual stimuli, perhaps due to differential costs and benefits associated with age, both used the chemical and the visual information in a combined manner.  相似文献   
104.
The fitness costs and benefits at different positions in fishshoals, bird flocks, and insect swarms can be asymmetric; agroup's edge may provide more feeding opportunities, but alsogreater predator risk. Animals make trade-offs between theseselection pressures based on individual differences in traitsincluding satiation level, ability to avoid predators, and sex.Previous studies did not evaluate the impact of sex on grouppositioning in these types of nonhierarchical, nonmating groupscalled congregations. A controlled laboratory experiment wasconducted, using marked whirligig beetles (Coleoptera: Gyrinidae),to test for sexual segregation and why different sexes mightchoose different positions. Soon after a disturbance, malesoften were found at the periphery and females at the centerof groups. There was also an overlying influence of feedingon position; satiated individuals moved toward the center andhungry individuals toward the periphery. Several minutes aftera disturbance, sexual segregation disappeared, but segregationdue to hunger persisted. Sexual segregation in this study wasbest explained by the predator avoidance hypothesis, not theenergy needs hypothesis. Females weighed less than males; thismay make them more at risk to predation because of reduced swimmingspeed or less mechanical protection from their exoskeleton.No difference between the sexes was found in the volume of theirdefensive chemicals. This is one of the first studies to showthat sex influences position of individuals within simple nonmatinggroups (congregations) and suggests that more attention shouldbe given to positional sex differences within shoals, flocks,herds, and swarms.  相似文献   
105.
Abstract 1. It has become apparent that predators may strongly decrease prey fitness without direct contact with the prey, as they induce the development of defence systems that limit the availability of energy for growth and reproduction. Recent studies suggest that stress proteins may help prey organisms deal with this stress. The pattern is not general, however, and little is known about species differences in physiological traits in coping with predator stress, and covariation of physiological with other antipredator traits. 2. To explore these issues, we quantified levels of constitutive and fish‐induced stress proteins (Hsp60 and Hsp70) and anti‐predator behaviours in larvae of two damselfly species that differ in lifestyle. Both stress proteins were fixed at higher levels in Erythromma najas, which has a slow lifestyle, than in Lestes sponsa, which has a fast lifestyle. Similarly, anti‐predator behaviours were fixed at safer levels in E. najas than in L. sponsa. 3. These results suggest that stress proteins may be part of anti‐predator syndromes of damselfly larvae, and there may be trait co‐specialisation between stress proteins and behavioural anti‐predator traits. Studies formally testing these hypotheses in more species may prove rewarding in advancing our understanding of the functional integration of physiological anti‐predator traits in relation to the prey’s lifestyle.  相似文献   
106.
Insect species inventories along with pest prevalence, foraging behavior of pollinators and their effect on fruit set of mango were studied in a mango‐based agroforestry area in Bangladesh during January to June 2013. Of 1751 collected insects, 11 species in five orders and nine families were pests, 13 species in six orders and eight families were predators and eight species belonging to three orders and seven families were found as pollinators. The pests exerted significantly higher abundance but lower diversity than pollinator, predator and other insects. The pollinator richness was found to be lowest but showed higher as well as similar diversity to other category insects. Three pest species prevailed throughout the season and hoppers showed significant abundance. Among the predators, ants were most abundant. Sulphur butterfly and syrphid fly revealed statistically identical and higher abundance than other pollinators. During the flowering season, pests were dominant and the abundance of insects was observed to peak at 11.00 h. The pollinators differed in their landing duration on flowers and their activity led to higher levels of fruit set. This study provides baseline information on insect abundance in an agroforestry system, which stresses the importance of conservation of beneficial insects.  相似文献   
107.
Empirical evidence is beginning to show that predators can be important drivers of elemental cycling within ecosystems by propagating indirect effects that determine the distribution of elements among trophic levels as well as determine the chemical content of organic matter that becomes decomposed by microbes. These indirect effects can be propagated by predator consumptive effects on prey, nonconsumptive (risk) effects, or a combination of both. Currently, there is insufficient theory to predict how such predator effects should propagate throughout ecosystems. We present here a theoretical framework for exploring predator effects on ecosystem elemental cycling to encourage further empirical quantification. We use a classic ecosystem trophic compartment model as a basis for our analyses but infuse principles from ecological stoichiometry into the analyses of elemental cycling. Using a combined analytical‐numerical approach, we compare how predators affect cycling through consumptive effects in which they control the flux of nutrients up trophic chains; through risk effects in which they change the homeostatic elemental balance of herbivore prey which accordingly changes the element ratio herbivores select from plants; and through a combination of both effects. Our analysis reveals that predators can have quantitatively important effects on elemental cycling, relative to a model formalism that excludes predator effects. Furthermore, the feedbacks due to predator nonconsumptive effects often have the quantitatively strongest impact on whole ecosystem elemental stocks, production and efficiency rates, and recycling fluxes by changing the stoichiometric balance of all trophic levels. Our modeling framework predictably shows how bottom‐up control by microbes and top‐down control by predators on ecosystems become interdependent when top predator effects permeate ecosystems.  相似文献   
108.
Understanding the impacts of invasive species requires placing invasion within a full community context. Plant invaders are often considered in the context of herbivores that may drive invasion by avoiding invaders while consuming natives (enemy escape), or inhibit invasion by consuming invaders (biotic resistance). However, predators that attack those herbivores are rarely considered as major players in invasion. Invasive plants often promote predators, generally by providing improved habitat. Here, we show that predator‐promoting invaders may initiate a negative feedback loop that inhibits invasion. By enabling top‐down control of herbivores, predator‐promoting invaders lose any advantage gained through enemy escape, indirectly favoring natives. In cases where palatable invaders encounter biotic resistance, predator promotion may allow an invader to persist, but not dominate. Overall, results indicate that placing invaders in a full community context may reveal reduced impacts of invaders compared to expectations based on simple plant–plant or plant–herbivore subsystems.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号