首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2815篇
  免费   329篇
  国内免费   162篇
  2024年   14篇
  2023年   66篇
  2022年   45篇
  2021年   89篇
  2020年   130篇
  2019年   165篇
  2018年   115篇
  2017年   127篇
  2016年   147篇
  2015年   128篇
  2014年   159篇
  2013年   210篇
  2012年   78篇
  2011年   103篇
  2010年   112篇
  2009年   150篇
  2008年   160篇
  2007年   145篇
  2006年   132篇
  2005年   113篇
  2004年   96篇
  2003年   88篇
  2002年   83篇
  2001年   64篇
  2000年   66篇
  1999年   73篇
  1998年   58篇
  1997年   36篇
  1996年   30篇
  1995年   43篇
  1994年   35篇
  1993年   26篇
  1992年   26篇
  1991年   22篇
  1990年   25篇
  1989年   25篇
  1988年   16篇
  1987年   14篇
  1986年   9篇
  1985年   24篇
  1984年   17篇
  1982年   6篇
  1981年   7篇
  1980年   5篇
  1979年   4篇
  1978年   7篇
  1977年   4篇
  1976年   7篇
  1975年   1篇
  1971年   1篇
排序方式: 共有3306条查询结果,搜索用时 15 毫秒
121.
A predator–prey discrete-time model with Holling-IV functional response and distributed delays is investigated in this paper. By using the comparison theorem of the difference equation and some analysis technique, some sufficient conditions are obtained for the permanence of the discrete predator–prey system. Two examples are given to illustrate the feasibility of the obtained result.  相似文献   
122.
Future climate change is likely to affect distributions of species, disrupt biotic interactions, and cause spatial incongruity of predator–prey habitats. Understanding the impacts of future climate change on species distribution will help in the formulation of conservation policies to reduce the risks of future biodiversity losses. Using a species distribution modeling approach by MaxEnt, we modeled current and future distributions of snow leopard (Panthera uncia) and its common prey, blue sheep (Pseudois nayaur), and observed the changes in niche overlap in the Nepal Himalaya. Annual mean temperature is the major climatic factor responsible for the snow leopard and blue sheep distributions in the energy‐deficient environments of high altitudes. Currently, about 15.32% and 15.93% area of the Nepal Himalaya are suitable for snow leopard and blue sheep habitats, respectively. The bioclimatic models show that the current suitable habitats of both snow leopard and blue sheep will be reduced under future climate change. The predicted suitable habitat of the snow leopard is decreased when blue sheep habitats is incorporated in the model. Our climate‐only model shows that only 11.64% (17,190 km2) area of Nepal is suitable for the snow leopard under current climate and the suitable habitat reduces to 5,435 km2 (reduced by 24.02%) after incorporating the predicted distribution of blue sheep. The predicted distribution of snow leopard reduces by 14.57% in 2030 and by 21.57% in 2050 when the predicted distribution of blue sheep is included as compared to 1.98% reduction in 2030 and 3.80% reduction in 2050 based on the climate‐only model. It is predicted that future climate may alter the predator–prey spatial interaction inducing a lower degree of overlap and a higher degree of mismatch between snow leopard and blue sheep niches. This suggests increased energetic costs of finding preferred prey for snow leopards – a species already facing energetic constraints due to the limited dietary resources in its alpine habitat. Our findings provide valuable information for extension of protected areas in future.  相似文献   
123.
Camouflage is one of the most widespread antipredator defences, and its mechanistic basis has attracted considerable interest in recent years. The effectiveness of camouflage depends on the interaction between an animal's appearance and its background. Concealment can therefore be improved by changes to an animal's own appearance, by behaviorally selecting an optimal background, or by modifying the background to better match the animal's own appearance. Research to date has largely focussed on the first of these mechanisms, whereas there has been little work on the second and almost none on the third. Even though a number of animal species may potentially modify their environment to improve individual‐specific camouflage, this has rarely if ever been quantitatively investigated, or its adaptive value tested. Kittlitz's plovers (Charadrius pecuarius) use material (stones and vegetation) to cover their nests when predators approach, providing concealment that is independent of the inflexible appearance of the adult or eggs, and that can be adjusted to suit the local surrounding background. We used digital imaging and predator vision modeling to investigate the camouflage properties of covered nests, and whether their camouflage affected their survival. The plovers' nest‐covering materials were consistent with a trade‐off between selecting materials that matched the color of the eggs, while resulting in poorer nest pattern and contrast matching to the nest surroundings. Alternatively, the systematic use of materials with high‐contrast and small‐pattern grain sizes could reflect a deliberate disruptive coloration strategy, whereby high‐contrast material breaks up the telltale outline of the clutch. No camouflage variables predicted nest survival. Our study highlights the potential for camouflage to be enhanced by background modification. This provides a flexible system for modifying an animal's conspicuousness, to which the main limitation may be the available materials rather than the animal's appearance.  相似文献   
124.
Comprehension of ecological processes in marine animals requires information regarding dynamic vertical habitat use. While many pelagic predators primarily associate with epipelagic waters, some species routinely dive beyond the deep scattering layer. Actuation for exploiting these aphotic habitats remains largely unknown. Recent telemetry data from oceanic whitetip sharks (Carcharhinus longimanus) in the Atlantic show a strong association with warm waters (>20°C) less than 200 m. Yet, individuals regularly exhibit excursions into the meso‐ and bathypelagic zone. In order to examine deep‐diving behavior in oceanic whitetip sharks, we physically recovered 16 pop‐up satellite archival tags and analyzed the high‐resolution depth and temperature data. Diving behavior was evaluated in the context of plausible functional behavior hypotheses including interactive behaviors, energy conservation, thermoregulation, navigation, and foraging. Mesopelagic excursions (= 610) occurred throughout the entire migratory circuit in all individuals, with no indication of site specificity. Six depth‐versus‐time descent and ascent profiles were identified. Descent profile shapes showed little association with examined environmental variables. Contrastingly, ascent profile shapes were related to environmental factors and appear to represent unique behavioral responses to abiotic conditions present at the dive apex. However, environmental conditions may not be the sole factors influencing ascents, as ascent mode may be linked to intentional behaviors. While dive functionality remains unconfirmed, our study suggests that mesopelagic excursions relate to active foraging behavior or navigation. Dive timing, prey constituents, and dive shape support foraging as the most viable hypothesis for mesopelagic excursions, indicating that the oceanic whitetip shark may regularly survey extreme environments (deep depths, low temperatures) as a foraging strategy. At the apex of these deep‐water excursions, sharks exhibit a variable behavioral response, perhaps, indicating the presence or absence of prey.  相似文献   
125.
Species trait data have been used to predict and infer ecological processes and the responses of biological communities to environmental changes. It has also been suggested that, in lieu of trait, data niche differences can be inferred from phylogenetic distance. It remains unclear how variation in trait data may influence the strength and character of ecological inference. Using species‐level trait data in community ecology assumes intraspecific variation is small in comparison with interspecific variation. Intraspecific variation across species ranges or within populations may lead to variability in trait data derived from different scales (i.e., local or regional) and methods (i.e., mean or maximum values). Variation in trait data across species can affect community‐level relationships. I examined variability in body size, a key trait often measured across taxa. I collected 12 metrics of fish species length (including common and maximum values) for 40 species from literature, online databases, museum collections, and field data. I then tested whether different metrics of fish length could consistently predict observed species range boundary shifts and the impacts of an introduced predator on inland lake fish communities across Ontario, Canada. I also investigated whether phylogenetic signal, an indicator of niche‐conservativism, changed among measures. I found strong correlations between length metrics and limited variation across metrics. Accordingly, length was a consistently significant predictor of the response of fish communities to environmental change. Additionally, I found significant evidence of phylogenetic signal in fish length across metrics. Limited variation in length across metrics (within species), in comparison with variation within metrics (across species), made fish species length a reliable predictor at a community‐level. When considering species‐level trait data from different sources, researchers should examine the potential influence of intraspecific trait variation on data derived by different metrics and at different scales.  相似文献   
126.
采用种子萌发法对洋县药用植物群落土壤种子库物种组成、单位面积种子密度、物种丰富度及与地上群落结构的关系进行了研究。结果显示,研究区内共有种子植物50种(包括药用植物21种),隶属于28科47属,其中草本植物45种、乔木5种;不同药用植物群落间土壤种子库种子密度差异显著,从大到小依次为:2年生凹叶厚朴(Magnolia officinalis Rehd.et Wils.subsp.biloba(Rehd.et Wils.)Law)4年生凹叶厚朴7年生凹叶厚朴11年生凹叶厚朴杜仲-凹叶厚朴(Eucommia ulmoides Oliver-Magnolia officinalis Rehd.et Wils.subsp.biloba(Rehd.et Wils.)Law)7年生厚朴(Magnolia officinalis Rehd.et Wils.)杜仲山茱萸(Cornus officinalis Sieb.et Zucc.)山茱萸-凹叶厚朴;土壤种子库具有表聚性,土层深度与种子数量成负相关;药用植物群落土壤种子库与地上群落结构相似性普遍较低。低林龄群落的土壤种子库密度大于高林龄群落,因此低林龄群落有利于天然更新,它们在植被恢复和生物多样性保护中的潜在价值更大。本研究结果可为洋县药用植物群落天然更新提供理论指导。  相似文献   
127.
128.
129.
Many researchers have studied the relationship between masting by trees and seed predation by insects. Most of these studies have been plant centered, with little focus on the insect perspective. To estimate the effect of mast seeding on insect seed predators, the life‐history traits of these insects must also be considered because some seed insects can survive lean years by prolonged diapause. In this study, I examined larval infestation of acorns and life‐history traits of the acorn weevil, Curculio robustus (Roelofs) (Coleoptera: Curculionidae), in relation to acorn production of the deciduous oak Quercus acutissima Carruthers (Fagaceae) in a coppice stand in central Japan in 2004–2009. Curculio robustus females oviposit into Q. acutissima acorns, inside which the larvae develop. Mature larvae leave acorns and burrow into the soil, where they overwinter. Although germination did occur in acorns infested by weevil larvae, the percentage of germination was lower in acorns damaged by many larvae. Acorn production in Q. acutissima varied considerably among years. Both the number of C. robustus larvae infesting acorns and the percentage of acorns infested were affected by the amount of acorns produced by Q. acutissima, and two successive lean years appeared to have a considerable impact on C. robustus population size. Consequently, only a small fraction of the acorns produced were lost to predation in a mast year after two successive lean years. However, C. robustus could survive the two successive lean years because of prolonged larval diapause, probably leading to a marked decrease in population size. These findings suggest that masting in Q. acutissima succeeds as a predator satiation strategy in response to acorn damage by C. robustus, and that C. robustus has developed prolonged diapause as a counter‐adaptation.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号