首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10826篇
  免费   2201篇
  国内免费   1780篇
  14807篇
  2024年   80篇
  2023年   532篇
  2022年   346篇
  2021年   461篇
  2020年   849篇
  2019年   819篇
  2018年   752篇
  2017年   801篇
  2016年   771篇
  2015年   741篇
  2014年   761篇
  2013年   823篇
  2012年   584篇
  2011年   553篇
  2010年   530篇
  2009年   657篇
  2008年   639篇
  2007年   566篇
  2006年   489篇
  2005年   438篇
  2004年   372篇
  2003年   276篇
  2002年   248篇
  2001年   208篇
  2000年   216篇
  1999年   153篇
  1998年   161篇
  1997年   97篇
  1996年   110篇
  1995年   123篇
  1994年   92篇
  1993年   65篇
  1992年   51篇
  1991年   44篇
  1990年   41篇
  1989年   23篇
  1988年   30篇
  1987年   30篇
  1986年   33篇
  1985年   30篇
  1984年   30篇
  1983年   27篇
  1982年   39篇
  1981年   17篇
  1980年   32篇
  1979年   27篇
  1978年   6篇
  1977年   7篇
  1976年   7篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
62.
The efficiency of a terrestrial ecosystem to use rainfall in production is critical in regulating the ecological functions of the earth system under global change. However, it remains unclear how rain use efficiency (RUE) will be altered by changes in climate and human activities such as biofuel harvest. In this study, we used RUE data from a long‐term experiment in a tallgrass prairie to analyze the effects of warming and biofuel harvest (clipping). From 2000 to 2011, experimental warming enhanced RUE in most years, with larger positive effects in normal and wet than dry hydrological years. Clipping decreased RUE in dry and normal hydrological years, but had no impact on RUE in wet years. The observed RUE responses resulted from treatment‐induced changes in both biologically ineffective (i.e., runoff and soil evaporation) and effective (i.e., transpiration) parts of precipitation. For example, litter cover was increased in warming plots, but reduced by clipping, leading to negative and positive effects on runoff and soil evaporation, respectively. The dominance of C4 species, which usually have higher water use efficiency than C3 species, was enhanced by warming, but reduced by clipping. Moreover, RUE was positively correlated with ratios of rainfall in the late growing season (June–August), when the growth of C4 plants was most active, relative to that in the other seasons. Our results indicate that RUE is positively influenced by climate warming, but negatively affected by biofuel harvest in tallgrass prairie of the Great Plains. These findings highlight the important roles of plant community structure and temporal distribution of precipitation in regulating ecosystem RUE.  相似文献   
63.
64.
As a result of the global decline of fish stocks, an increasing number of fish species are becoming targets of heavy exploitation, often concomitantly with a lack of biological knowledge on their structure and demographics. Here we present 11 new polymorphic microsatellite loci, isolated from the slinger sea bream (Chrysoblephus puniceus, Sparidae), a relatively recent target of coastal fisheries in eastern South Africa. Levels of genetic diversity were assessed in 39 individuals collected from the KwaZulu-Natal coast (Park Rynie, South Africa). Observed and expected heterozygosities varied between 0.39 and 0.97 and between 0.53 and 0.96, respectively. One locus (SL35) showed significant heterozygote deficiency and linkage disequilibrium was detected between SL35 and SL1. Importantly, five of these microsatellites cross-amplify in Cheimerius nufar, a sympatric species also subjected to exploitation.  相似文献   
65.
66.
Aims Deforestation and biodiversity loss are two alarming, closely related problems, and the main factors triggering changes in land use. Indigenous agricultural practices in the western Amazon Basin are known as chakras, and their structure and dynamics are seemingly optimal for forest management. However, the variability in tree species and the degree of forest recovery after abandonment is poorly documented in this agroforestry system (AFS). The goals of this study were: (i) to investigate whether the different AFSs (chakras) preserve similar levels of forest diversity, (ii) to determine the effect of transformation of mature forests (MF) to chakras, in particular, forest alpha and beta diversity levels, and (iii) to investigate whether native tree species recovery leads to the original forest structure following chakra abandonment.  相似文献   
67.
The climate change risk to biodiversity operates alongside a range of anthropogenic pressures. These include habitat loss and fragmentation, which may prevent species from migrating between isolated habitat patches in order to track their suitable climate space. Predictive modelling has advanced in scope and complexity to integrate: (i) projected shifts in climate suitability, with (ii) spatial patterns of landscape habitat quality and rates of dispersal. This improved ecological realism is suited to data-rich model species, though its broader generalisation comes with accumulated uncertainties, e.g. incomplete knowledge of species response to variable habitat quality, parameterisation of dispersal kernels etc. This study adopts ancient woodland indicator species (lichen epiphytes) as a guild that couples relative simplicity with biological rigour. Subjectively-assigned indicator species were statistically tested against a binary habitat map of woodlands of known continuity (>250 yr), and bioclimatic models were used to demonstrate trends in their increased/decreased environmental suitability under conditions of ‘no dispersal’. Given the expectation of rapid climate change on ecological time-scales, no dispersal for ancient woodland indicators becomes a plausible assumption. The risk to ancient woodland indicators is spatially structured (greater in a relative continental compared to an oceanic climatic zone), though regional differences are weakened by significant variation (within regions) in woodland extent. As a corollary, ancient woodland indicators that are sensitive to projected climate change scenarios may be excellent targets for monitoring climate change impacts for biodiversity at a site-scale, including the outcome of strategic habitat management (climate change adaptation) designed to offset risk for dispersal-limited species.  相似文献   
68.
69.
Spatial and temporal phenotypic differentiation in mean body size is of commonplace occurrence, but the underlying causes remain often unclear: both genetic differentiation in response to selection (or drift) and environmentally induced plasticity can create similar phenotypic patterns. Studying changes in body mass in Siberian jays (Perisoreus infaustus) over three decades, we discovered that mean body mass declined drastically (ca. 10%) over the first two decades, but increased markedly thereafter back to almost the initial level. Quantitative genetic analyses revealed that although body mass was heritable (h2 = 0.46), the pronounced temporal decrease in body mass was mainly a product of phenotypic plasticity. However, a concomitant and statistically significant decrease in predicted breeding values suggests a genetic component to this change. The subsequent increase in mean body mass was indicated to be entirely due to plasticity. Selection on body mass was estimated to be too weak to fully account for the observed genetic decline in body mass, but bias in selection differential estimates due to environmental covariance between body mass and fitness is possible. Hence, the observed body mass changes appear to be driven mainly by phenotypic plasticity. Although we were not able to identify the ecological driver of the observed plastic changes, the results highlight the utility of quantitative genetic approaches in disentangling genetic and phenotypic changes in natural populations.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号