首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44788篇
  免费   17453篇
  国内免费   97篇
  2023年   61篇
  2022年   68篇
  2021年   516篇
  2020年   2873篇
  2019年   4385篇
  2018年   4652篇
  2017年   4626篇
  2016年   4342篇
  2015年   4199篇
  2014年   4117篇
  2013年   4493篇
  2012年   3889篇
  2011年   4023篇
  2010年   3524篇
  2009年   2386篇
  2008年   2519篇
  2007年   1944篇
  2006年   1962篇
  2005年   1635篇
  2004年   1318篇
  2003年   1409篇
  2002年   1224篇
  2001年   913篇
  2000年   487篇
  1999年   309篇
  1998年   49篇
  1997年   64篇
  1996年   60篇
  1995年   41篇
  1994年   28篇
  1993年   42篇
  1992年   32篇
  1991年   21篇
  1990年   8篇
  1989年   18篇
  1988年   12篇
  1987年   14篇
  1986年   8篇
  1985年   13篇
  1984年   13篇
  1983年   4篇
  1982年   7篇
  1981年   5篇
  1980年   6篇
  1979年   7篇
  1978年   6篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Nancy Pallin has been involved in bush regeneration practice for over 25 years as well as being involved in conservation advocacy. Her main work, helping to establish the Ku‐ring‐gai Flying‐Fox Reserve and coordinating its ecological restoration, draws on an ability to interpret nature to others and inspire collective action  相似文献   
962.
963.
964.
965.
966.
Aim Small (< 1 km2) alpine glaciers are likely to disappear in this century, resulting in decreased regional habitat heterogeneity in associated streams. Both heterogeneity within and spatial isolation among glacier‐influenced streams can enhance beta diversity of stream‐dwelling organisms. We measured beta at both community and population‐genetic levels within and among streams currently influenced by small Pyrenean glaciers. We aimed to evaluate whether patterns are analogous between the two levels, to apply various approaches for characterizing beta, and to infer the outcome of future glacier loss on regional biodiversity. Location Four glacier‐fed basins in the Parc National des Pyrénées, France. Methods We classified each of 18 stream reaches across the basins into either high‐, mid‐ or low‐‘glaciality’ (glacial influence) groups according to four physicochemical characteristics. At each reach, we collected macroinvertebrate communities and evaluated mitochondrial DNA haplotypes for 11–13 individuals of Baetis alpinus Pictet. Using taxa/haplotypes as basic units, we evaluated community and population‐genetic beta diversity simultaneously. We measured beta diversity in three major ways: as multivariate (Sørensen's dissimilarity, Jost D) and ‘classical’ (gamma/alpha) variation to compare among glaciality groups, and as turnover along the glaciality gradient within each basin. Results For most approaches at both organizational levels, beta was greatest among high‐glaciality reaches, absolute values of variation of beta in high‐glaciality streams were strikingly similar between levels, and the steepest turnover within basins occurred between high‐ and mid‐glaciality reaches. Therefore, high‐glaciality reaches contained assemblages and populations that were unique both within that stream type (among basins) and compared with other stream types within basins. Main conclusions Parallel beta diversity patterns at population‐genetic and community levels suggested that environmental drivers influence these levels analogously. Extreme conditions (e.g. low temperature, high instability, isolation) in high‐glaciality streams probably enhance beta at both levels. Stream beta diversity is likely to decrease substantially with continued glacial reduction in this system.  相似文献   
967.
968.
969.
General principles about the consequences of seed dispersal by animals for the structure and dynamics of plant populations and communities remain elusive. This is in part because seed deposition patterns emerge from interactions between frugivore behaviour and the distribution of food resources, both of which can vary over space and time. Here we advocate a frugivore‐centred, process‐based, synthetic approach to seed dispersal research that integrates seed dispersal ecology and animal movement across multiple spatio‐temporal scales. To guide this synthesis, we survey existing literature using paradigms from seed dispersal and animal movement. Specifically, studies are discussed with respect to five criteria: selection of focal organisms (animal or plant); measurement of animal movement; characterization of seed shadow; animal, plant and environmental factors included in the study; and scales of the study. Most studies focused on either frugivores or plants and characterized seed shadows directly by combining gut retention time with animal movement data or indirectly by conducting maternity analysis of seeds. Although organismal traits and environmental factors were often measured, they were seldom used to characterize seed shadows. Multi‐scale analyses were rare, with seed shadows mostly characterized at fine spatial scales, over single fruiting seasons, and for individual dispersers. Novel animal‐ and seed‐tracking technologies, remote environmental monitoring tools, and advances in analytical methods can enable effective implementation of a hierarchical mechanistic approach to the study of seed dispersal. This kind of mechanistic approach will provide novel insights regarding the complex interplay between the factors that modulate animal behaviour and subsequently influence seed dispersal patterns across spatial and temporal scales.  相似文献   
970.
Glycosaminoglycans (GAGs) are complex carbohydrates that are ubiquitously present on the cell surface and in the extracellular matrix. Interactions between GAGs and pathogens represent the first line of contact between pathogen and host cell and are crucial to a pathogen's invasive potential. Their complexity and structural diversity allow GAGs to control a wide array of biological interactions influencing many physiological and pathological processes, including adhesion, cell‐to‐cell communication, biochemical cascades, and the immune response. In recent years, increasing evidence indicates an extraordinary role for GAGs in the pathogenesis of viruses, bacteria and parasites. Herein, we examine the interface between GAGs and different pathogens, and address the divergent biological functions of GAGs in infectious disease. We consider approaches to use this understanding to design novel therapeutic strategies addressing new challenges in the treatment of infectious diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号