首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2828篇
  免费   310篇
  国内免费   476篇
  3614篇
  2024年   18篇
  2023年   73篇
  2022年   66篇
  2021年   73篇
  2020年   135篇
  2019年   150篇
  2018年   140篇
  2017年   113篇
  2016年   120篇
  2015年   123篇
  2014年   131篇
  2013年   210篇
  2012年   123篇
  2011年   129篇
  2010年   99篇
  2009年   117篇
  2008年   139篇
  2007年   137篇
  2006年   144篇
  2005年   115篇
  2004年   110篇
  2003年   87篇
  2002年   104篇
  2001年   74篇
  2000年   63篇
  1999年   62篇
  1998年   58篇
  1997年   54篇
  1996年   49篇
  1995年   40篇
  1994年   30篇
  1993年   48篇
  1992年   52篇
  1991年   44篇
  1990年   48篇
  1989年   38篇
  1988年   45篇
  1987年   38篇
  1986年   32篇
  1985年   32篇
  1984年   27篇
  1983年   21篇
  1982年   31篇
  1981年   16篇
  1980年   20篇
  1979年   7篇
  1976年   5篇
  1975年   6篇
  1974年   4篇
  1973年   5篇
排序方式: 共有3614条查询结果,搜索用时 0 毫秒
991.
Soybean meal (SBM) is the main protein source in diets for turkeys. High dietary levels of SBM are thought to increase the incidence of foot pad dermatitis (FPD). Therefore, this study was conducted to test potential effects of high SBM and to elucidate which constituents in SBM might be associated with the development of FPD. Two week-old female turkeys were allotted to four groups of 29 birds each, and housed on dry wood shavings in floor pens over a period of three weeks. Four different diets were fed: control, high SBM, high potassium (K) or high oligosaccharide (OL) diet. Additionally, for only 8 h/d half of the animals in each group were exposed to wet litter (27% DM) in adjacent separate boxes. The foot pads of all birds were assessed on days 0, 7, 14 and 21 for external lesions. For the histopathology of the foot pads, on day 0 three birds from each group, and on days 7 and 14 six birds per feeding group were selected. The remaining birds in each group were sacrificed on day 21 and their pads were evaluated histologically. High dietary levels of SBM, potassium or oligosaccharides did not influence the severity of FPD on dry litter, but slightly increased the severity on wet litter. However, there were no histopathological differences in FPD severity between these dietary treatments within each litter form compared to the control. Nevertheless, the FPD severity was in general higher on wet litter. Thus, litter moisture appears to be one of the most important factors involved in FPD in turkeys. In addition, all nutritional factors which increase water intake and excreta or litter moisture may contribute to an increased development and severity of FPD in turkeys.  相似文献   
992.
The x-ray structure of the KcsA channel at different [K(+)] and [Rb(+)] provided insight into how K(+) channels might achieve high selectivity and high K(+) transit rates and showed marked differences between the occupancies of the two ions within the ion channel pore. In this study, the binding of kappa-conotoxin PVIIA (kappa-PVIIA) to Shaker K(+) channel in the presence of K(+) and Rb(+) was investigated. It is demonstrated that the complex results obtained were largely rationalized by differences in selectivity filter occupancy of this 6TM channels as predicted from the structural work on KcsA. kappa-PVIIA inhibition of the Shaker K(+) channel differs in the closed and open state. When K(+) is the only permeant ion, increasing extracellular [K(+)] decreases kappa-PVIIA affinity for closed channels by decreasing the "on" binding rate, but has no effect on the block of open channels, which is influenced only by the intracellular [K(+)]. In contrast, extracellular [Rb(+)] affects both closed- and open-channel binding. As extracellular [Rb(+)] increases, (a) binding to the closed channel is slightly destabilized and acquires faster kinetics, and (b) open channel block is also destabilized and the lowest block seems to occur when the pore is likely filled only by Rb(+). These results suggest that the nature of the permeant ions determines both the occupancy and the location of the pore site from which they interact with kappa-PVIIA binding. Thus, our results suggest that the permeant ion(s) within a channel pore can determine its functional and pharmacological properties.  相似文献   
993.
Potassium deficiency enhanced the synthesis of fifteen proteins in the nitrogen-fixing cyanobacteriumAnabaena torulosa and of nine proteins inEscherichia coli. These were termed potassium deficiency-induced proteins or PDPs and constitute hitherto unknown potassium deficiency-induced stimulons. Potassium deficiency also enhanced the synthesis of certain osmotic stress-induced proteins. Addition of K+ repressed the synthesis of a majority of the osmotic stress-induced proteins and of PDPs in these bacteria. These proteins contrast with the dinitrogenase reductase ofA. torulosa and the glycine betaine-binding protein ofE. coli, both of which were osmo-induced to a higher level in potassium-supplemented conditions. The data demonstrate the occurrence of novel potassium deficiency-induced stimulons and a wider role of K+ in regulation of gene expression and stress responses in bacteria.  相似文献   
994.
Sporotrichosis is rare in Turkey. We report a 40-year-old woman who had subcutaneous sporotrichosis caused by sporothrix schenckii that was successfully treated with terbinafine (250 mg, twice a day) for a period of 6 months. She received a saturated solution of potassium iodide orally for two months. Terbinafine and potassium iodide are suggested to be the agents of choice for treatment of subcutaneous sporotrichosis.  相似文献   
995.
Cultured cerebellar granule neurons (CGNs) require membrane depolarization or neurotrophic factors for their survival in vitro and undergo apoptosis when deprived of these survival-promoting stimuli. Here, we show that secretory phospholipases A(2)s (sPLA(2)s) rescue CGNs from apoptosis after potassium deprivation. The neurotrophic effect required the enzymatic activity of sPLA(2)s, since catalytically inactive mutants of sPLA(2)s failed to protect CGNs from apoptosis. Consistently, the ability of sPLA(2)s to protect CGNs from apoptosis correlated with the extent of sPLA(2)-induced arachidonic acid release from live CGNs. The survival-promoting effect of sPLA(2) was inhibited by depletion of extracellular Ca(2+) or by the presence of L-type Ca(2+) channel blocker nicardipine, suggesting that Ca(2+) influx occurs upon sPLA(2) treatment. Among the mammalian sPLA(2)s tested, only group X sPLA(2), but not group IB nor IIA sPLA(2)s, displayed neurotrophic activity. These results suggest a novel, unexpected neurotrophin-like role of sPLA(2) in the nervous system.  相似文献   
996.
Transmembrane potential responses of single cardiac cells stimulated at rest were studied with uniform rectangular field pulses having durations of 0.5-10 ms. Cells were enzymatically isolated from guinea pig ventricles, stained with voltage sensitive dye di-8-ANEPPS, and stimulated along their long axes. Fluorescence signals were recorded with spatial resolution of 17 microm for up to 11 sites along the cell. With 5 and 10 ms pulses, all cells (n = 10) fired an action potential over a broad range of field amplitudes (approximately 3-65 V/cm). With 0.5 and 1 ms pulses, all cells (n = 7) fired an action potential for field amplitudes ranging from the threshold value (approximately 4-8 V/cm) to 50-60 V/cm. However, when the field amplitude was further increased, five of seven cells failed to fire an action potential. We postulated that this paradoxical loss of excitation for higher amplitude field pulses is the result of nonuniform polarization of the cell membrane under conditions of electric field stimulation, and a counterbalancing interplay between sodium current and inwardly rectifying potassium current with increasing field strength. This hypothesis was verified using computer simulations of a field-stimulated guinea pig ventricular cell. In conclusion, we show that for stimulation with short-duration pulses, cells can be excited for fields ranging between a low amplitude excitation threshold and a high amplitude threshold above which the excitation is suppressed. These results can have implications for the mechanistic understanding of defibrillation outcome, especially in the setting of diseased myocardium.  相似文献   
997.
麻醉剂氟烷对心脏毒蕈碱型钾通道的影响   总被引:5,自引:3,他引:2  
Zang WJ  Yu XJ  Zang YM 《生理学报》2000,52(2):175-178
神经递质乙酰胆碱(ACh)调节心脏功能最重要的离子通道就暗毒蕈碱型钾通道(iK,ACh),该通道由ACh经鸟苷酸调节蛋白(G蛋白)的βγ亚单位而激活。本实验彩全细胞膜片箝方法,观察了麻醉药氟烷对豚鼠心房肌细胞iK,ACh的影响。氟烷对iK,ACh电流具抑制效应,灌注之后可使ACh激活的iK,ACh速率减慢,峰植下降。但其抑制iK,ACh的程度依激活方式而异:经正常激活途径,即由ACh激活毒蕈碱M样  相似文献   
998.
The human D3 dopamine receptor can activate G-protein-coupled inward rectifier potassium channels (GIRKs), inhibit P/Q-type calcium channels, and inhibit spontaneous secretory activity in AtT-20 neuroendocrine cells (Kuzhikandathil, E.V., W. Yu, and G.S. Oxford. 1998. Mol. Cell. Neurosci. 12:390-402; Kuzhikandathil, E.V., and G.S. Oxford. 1999. J. Neurosci. 19:1698-1707). In this study, we evaluate the role of GIRKs in the D3 receptor-mediated inhibition of secretory activity in AtT-20 cells. The absence of selective blockers for GIRKs has precluded a direct test of the hypothesis that they play an important role in inhibiting secretory activity. However, the tetrameric structure of these channels provides a means of disrupting endogenous GIRK function using a dominant negative approach. To develop a dominant-negative GIRK mutant, the K(+) selectivity amino acid sequence -GYG- in the putative pore domain of the human GIRK2 channels was mutated to -AAA-, -GLG-, or -GFG-. While the mutation of -GYG- to -GFG- did not affect channel function, both the -AAA- and -GLG- GIRK2 mutants were nonfunctional. This suggests that the aromatic ring of the tyrosine residue rather than its hydroxyl group is involved in maintaining the pore architecture of human GIRK2 channels. When expressed in AtT-20 cells, the nonfunctional AAA-GIRK2 and GLG-GIRK2 acted as effective dominant-negative mutants and significantly attenuated endogenous GIRK currents. Furthermore, these dominant-negative mutants interfered with the D3 receptor-mediated inhibition of secretion in AtT-20 cells, suggesting they are centrally involved in the signaling pathway of this secretory response. These results indicate that dominant-negative GIRK mutants are effective molecular tools to examine the role of GIRK channels in vivo.  相似文献   
999.
Escherichia coli accumulates K+ by means of multiple transportsystems, of which TrkA is the most prominent at neutral and alkalinepH while Kup is major at acidic pH. In the present study, K+ uptakewas observed with cells grown under fermentative conditions at an initialpH of 9.0 and 7.3 (the medium pH decreased to 8.4 and 6.8, respectively,during the mid-logarithmic growth phase), washed with distilled water andresuspended in a K+ containing medium at pH 7.5 in the presence ofglucose. The kinetics for this K+ uptake and the amount of K+accumulated by the wild type and mutants having a functional TrkA orKup could confirm that K+ uptake by E. coli grown either at pH 9.0or pH 7.3 occurs mainly through TrkA. The following results distinguishpH dependent mode of TrkA operating: (1) K+ uptake was inhibited byDCCD in cells grown either at pH 9.0 or pH 7.3, although the stoichiometryof K+ influx to DCCD-inhibited H+ efflux for bacteria grownat pH 9.0 varied with external K+ concentration, but remained constantfor cells grown at pH 7.3; (2) K+ uptake was observed with an atpDmutant grown at pH 9.0 but not at pH 7.3; (3) The DCCD-inhibited H+efflux was increased 8-fold less by 5 mM K+ added into a K+ freemedium for bacteria grown at pH 9.0 than that for cells grown at pH 7.3;(4) the DCCD-inhibited ATPase activity of membrane vesicles from bacteriagrown at pH 9.0 was reduced a little in the presence of 100 mM K+,but stimulated more than 2.4-fold at pH 7.3.  相似文献   
1000.
To investigate the involvement of K+ efflux in apoptotic cell shrinkage, we monitored efflux of the K+ congener,86 Rb+, and cell volume during CD95-mediated apoptosis in Jurkat cells. An anti-CD95 antibody caused apoptosis associated with intracellular GSH depletion, a significant increase in 86Rb+ efflux, and a decrease in cell volume compared with control cells. Preincubating Jurkat cells with Val-Ala-Asp-chloromethylketone (VAD-cmk), an inhibitor of caspase proteases, prevented the observed 86Rb+ efflux and cell shrinkage induced by the anti- CD95 antibody. A wide range of inhibitors against most types of K+ channels could not inhibit CD95-mediated efflux of86 Rb+, however, the uptake of86 Rb+ by Jurkat cells was severely compromised when treated with anti-CD95 antibody. Uptake of86 Rb+ in Jurkat cells was sensitive to ouabain (a specific Na+/K+-ATPase inhibitor), demonstrating Na+/K+-ATPase dependent K+ uptake. Ouabain induced significant86 Rb+ efflux in untreated cells, as well as it seemed to compete with86 Rb+ efflux induced by the anti-CD95 antibody, supporting a role for Na+/K+-ATPase in the CD95-mediated86 Rb+ efflux. Ouabain treatment of Jurkat cells did not cause a reduction in cell volume, although together with the anti-CD95 antibody, ouabain potentiated CD95-mediated cell shrinkage. This suggests that the observed inhibition of Na++/K+-ATPase during apoptosis may also facilitate apoptotic cell shrinkage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号