首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2826篇
  免费   309篇
  国内免费   479篇
  3614篇
  2024年   18篇
  2023年   73篇
  2022年   66篇
  2021年   73篇
  2020年   135篇
  2019年   150篇
  2018年   140篇
  2017年   113篇
  2016年   120篇
  2015年   123篇
  2014年   131篇
  2013年   210篇
  2012年   123篇
  2011年   129篇
  2010年   99篇
  2009年   117篇
  2008年   139篇
  2007年   137篇
  2006年   144篇
  2005年   115篇
  2004年   110篇
  2003年   87篇
  2002年   104篇
  2001年   74篇
  2000年   63篇
  1999年   62篇
  1998年   58篇
  1997年   54篇
  1996年   49篇
  1995年   40篇
  1994年   30篇
  1993年   48篇
  1992年   52篇
  1991年   44篇
  1990年   48篇
  1989年   38篇
  1988年   45篇
  1987年   38篇
  1986年   32篇
  1985年   32篇
  1984年   27篇
  1983年   21篇
  1982年   31篇
  1981年   16篇
  1980年   20篇
  1979年   7篇
  1976年   5篇
  1975年   6篇
  1974年   4篇
  1973年   5篇
排序方式: 共有3614条查询结果,搜索用时 15 毫秒
91.
Bradford assay is one of the most common methods for measuring protein concentrations. However, some pharmaceutical excipients, such as detergents, interfere with Bradford assay even at low concentrations. Protein precipitation can be used to overcome sample incompatibility with protein quantitation. But the rate of protein recovery caused by acetone precipitation is only about 70%. In this study, we found that sucrose not only could increase the rate of protein recovery after 1 h acetone precipitation, but also did not interfere with Bradford assay. So we developed a method for rapid protein quantitation in protein drugs even if they contained interfering substances.  相似文献   
92.
Developing low‐cost, high‐capacity, high‐rate, and robust earth‐abundant electrode materials for energy storage is critical for the practical and scalable application of advanced battery technologies. Herein, the first example of synthesizing 1D peapod‐like bimetallic Fe2VO4 nanorods confined in N‐doped carbon porous nanowires with internal void space (Fe2VO4?NC nanopeapods) as a high‐capacity and stable anode material for potassium‐ion batteries (KIBs) is reported. The peapod‐like Fe2VO4?NC nanopeapod heterostructures with interior void space and external carbon shell efficiently prevent the aggregation of the active materials, facilitate fast transportation of electrons and ions, and accommodate volume variation during the cycling process, which substantially boosts the rate and cycling performance of Fe2VO4. The Fe2VO4?NC electrode exhibits high reversible specific depotassiation capacity of 380 mAh g?1 at 100 mA g?1 after 60 cycles and remarkable rate capability as well as long cycling stability with a high capacity of 196 mAh g?1 at 4 A g?1 after 2300 cycles. The first‐principles calculations reveal that Fe2VO4?NC nanopeapods have high ionic/electronic conductivity characteristics and low diffusion barriers for K+‐intercalation. This study opens up new way for investigating high‐capacity metal oxide as high‐rate and robust electrode materials for KIBs.  相似文献   
93.
94.
95.
Aims Precipitation is predicted to increase in arid and semiarid regions under climate change, with greater changes in intra- and inter-annual distribution in the future. As a major limiting factor in these regions, changes in precipitation undoubtedly influence plant growth and productivity. However, how the temporal shifts in precipitation will impact plant populations are uncertain.  相似文献   
96.
Climate‐change assessments project increasing precipitation variability through increased frequency of extreme events. However, the effects of interannual precipitation variance per se on ecosystem functioning have been largely understudied. Here, we report on the effects of interannual precipitation variability on the primary production of global drylands, which include deserts, steppes, shrublands, grasslands, and prairies and cover about 40% of the terrestrial earth surface. We used a global database that has 43 datasets, which are uniformly distributed in parameter space and each has at least 10 years of data. We found (a) that at the global scale, precipitation variability has a negative effect on aboveground net primary production. (b) Expected increases in interannual precipitation variability for the year 2,100 may result in a decrease of up to 12% of the global terrestrial carbon sink. (c) The effect of precipitation interannual variability on dryland productivity changes from positive to negative along a precipitation gradient. Arid sites with mean precipitation under 300 mm/year responded positively to increases in precipitation variability, whereas sites with mean precipitation over 300 mm/year responded negatively. We propose three complementary mechanisms to explain this result: (a) concave‐up and concave‐down precipitation–production relationships in arid vs. humid systems, (b) shift in the distribution of water in the soil profile, and (c) altered frequency of positive and negative legacies. Our results demonstrated that enhanced precipitation variability will have direct impacts on global drylands that can potentially affect the future terrestrial carbon sink.  相似文献   
97.
98.
Climate change is expected to alter precipitation patterns worldwide, which will affect streamflow in riverine ecosystems. It is vital to understand the impacts of projected flow variations, especially in tropical regions where the effects of climate change are expected to be one of the earliest to emerge. Space‐for‐time substitutions have been successful at predicting effects of climate change in terrestrial systems by using a spatial gradient to mimic the projected temporal change. However, concerns have been raised that the spatial variability in these models might not reflect the temporal variability. We utilized a well‐constrained rainfall gradient on Hawaii Island to determine (a) how predicted decreases in flow and increases in flow variability affect stream food resources and consumers and (b) if using a high temporal (monthly, four streams) or a high spatial (annual, eight streams) resolution sampling scheme would alter the results of a space‐for‐time substitution. Declines in benthic and suspended resource quantity (10‐ to 40‐fold) and quality (shift from macrophyte to leaf litter dominated) contributed to 35‐fold decreases in macroinvertebrate biomass with predicted changes in the magnitude and variability in the flow. Invertebrate composition switched from caddisflies and damselflies to taxa with faster turnover rates (mosquitoes, copepods). Changes in resource and consumer composition patterns were stronger with high temporal resolution sampling. However, trends and ranges of results did not differ between the two sampling regimes, indicating that a suitable, well‐constrained spatial gradient is an appropriate tool for examining temporal change. Our study is the first to investigate resource to community wide effects of climate change on tropical streams on a spatial and temporal scale. We determined that predicted flow alterations would decrease stream resource and consumer quantity and quality, which can alter stream function, as well as biomass and habitat for freshwater, marine, and terrestrial consumers dependent on these resources.  相似文献   
99.
Previously we have reported on a series of pyridine-3-carboxamide inhibitors of DNA gyrase and DNA topoisomerase IV that were designed using a computational de novo design approach and which showed promising antibacterial properties. Herein we describe the synthesis of additional examples from this series aimed specifically at DNA gyrase, along with crystal structures confirming the predicted mode of binding and in vitro ADME data which describe the drug-likeness of these compounds.  相似文献   
100.
The frequency and magnitude of extreme climate events are increasing with global change, yet we lack predictions and empirical evidence for the ability of wild populations to persist and adapt in response to these events. Here, we used Fisher's Fundamental Theorem of Natural Selection to evaluate the adaptive potential of Lasthenia fremontii, a herbaceous winter annual that is endemic to seasonally flooded wetlands in California, to alternative flooding regimes that occur during El Niño Southern Oscillation (ENSO) events. The results indicate that populations may exhibit greater adaptive potential in response to dry years than wet years, and that the relative performance of populations will change across climate scenarios. More generally, our findings show that extreme climate events can substantially change the potential for populations to adapt to climate change by modulating the expression of standing genetic variation and mean fitness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号