首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4551篇
  免费   389篇
  国内免费   825篇
  2024年   7篇
  2023年   85篇
  2022年   93篇
  2021年   137篇
  2020年   165篇
  2019年   192篇
  2018年   181篇
  2017年   151篇
  2016年   155篇
  2015年   184篇
  2014年   220篇
  2013年   296篇
  2012年   199篇
  2011年   241篇
  2010年   152篇
  2009年   248篇
  2008年   238篇
  2007年   265篇
  2006年   236篇
  2005年   237篇
  2004年   159篇
  2003年   186篇
  2002年   148篇
  2001年   141篇
  2000年   102篇
  1999年   133篇
  1998年   94篇
  1997年   92篇
  1996年   79篇
  1995年   80篇
  1994年   79篇
  1993年   73篇
  1992年   67篇
  1991年   62篇
  1990年   77篇
  1989年   53篇
  1988年   49篇
  1987年   51篇
  1986年   45篇
  1985年   59篇
  1984年   59篇
  1983年   21篇
  1982年   56篇
  1981年   32篇
  1980年   39篇
  1979年   17篇
  1978年   4篇
  1977年   12篇
  1975年   3篇
  1972年   4篇
排序方式: 共有5765条查询结果,搜索用时 350 毫秒
111.
The effects of salinisation of soil on Acacia catechu (Mimosaceae) were studied by means of emergence and growth of seedlings and pattern of mineral accumulation. A mixture of chlorides and sulphates of Na, K, Ca and Mg was added to the soil and salinity was maintained at 4.1, 6.3, 8.2,10.1 and 12.2 dSm−1. A negative relationship between proportion of seed germination and salt concentration was obtained. Seedlings did not emerge when soil salinity exceeded 10.1 dSm−1. Results suggested that this tree species is salt tolerant at the seed germination stage. Seedlings survived and grew up to soil salinity of 10.1 dSm−1, which suggests that this species is salt tolerant at the seedling stage too. Elongation of stem and root was retarded by increasing salt stress. Among the tissues, young roots and stem were most tolerant to salt stress and were followed by old roots and leaves, successively. Leaf tissue exhibited maximum reduction in dry mass production in response to increasing salt stress. However, production of young roots and death of old roots were found to be continuous and plants apparently use this process as an avoidance mechanism to remove excess ions and delay onset of ion accumulation in this tissue. This phenomenon, designated “fine root turnover”, is of importance to the mechanisms of salt tolerance. Plants accumulated Na in roots and were able to regulate transfer of Na ions to leaves. Stem tissues were a barrier for translocation of Na from root to leaf. Moreover, K was affected in response to salinity; it rapidly decreased in root tissues with increased salinisation. Nitrogen content decreased in all tissues (leaf, stem and root) in response to low water treatment and salinisation of soil. Phosphorus content significantly decreased, while Ca increased in leaves as soil salinity increased. Changes in tissue and whole plant accumulation patterns of the other elements tested, as well as possible mechanisms for avoidance of Na toxicity in this tree species during salinisation, are discussed.  相似文献   
112.
The distribution of an antihypertensive dipeptide, Val-Tyr (VY), in the tissues of spontaneously hypertensive rats (SHR) was investigated in this study. A single oral administration of VY (10 mg/kg) to 18-week-old SHR resulted in a prolonged reduction of systolic blood pressure (SBP) up to 9 h (SBP0h 198.0+/-3.6 mmHg; SBP9h 154.6+/-3.5 mmHg). As a result of VY determination, a roughly 10-fold higher increment of plasma VY level was observed at 1 h than that at 0 h, whereas thereafter the level declined rapidly. In tissues, VY was widely accumulated in the kidney, lung, heart, mesenteric artery and abdominal aorta with the area under the curve over 9 h of more than 40 pmol h/g tissue; of these a higher VY level was observed in the kidney and lung. In addition, a mean resident time (MRT) for each tissue (>5 h except for liver) revealed that VY preferably accumulated in the tissues rather than in the plasma (MRT 3.8 h). Significant reductions of tissue angiotensin I-converting enzyme activity and angiotensin II level were found in the abdominal aorta as well as in the kidney, suggesting that these organs could be a target site associated with the antihypertensive action of VY.  相似文献   
113.
This study examined the linkage between xylem vulnerability, stomatal response to leaf water potential (ΨL), and loss of leaf turgor in eight species of seasonally dry tropical forest trees. In order to maximize the potential variation in these traits species that exhibit a range of leaf habits and phenologies were selected. It was found that in all species stomatal conductance was responsive to ΨL over a narrow range of water potentials, and that ΨL inducing 50% stomatal closure was correlated with both the ΨL inducing a 20% loss of xylem hydraulic conductivity and leaf water potential at turgor loss in all species. In contrast, there was no correlation between the water potential causing a 50% loss of conductivity in the stem xylem, and the water potential at stomatal closure (ΨSC) amongst species. It was concluded that although both leaf and xylem characters are correlated with the response of stomata to ΨL, there is considerable flexibility in this linkage. The range of responses is discussed in terms of the differing leaf‐loss strategies exhibited by these species.  相似文献   
114.
Diseased fruit bodies of Agaricus bitorquis, with similar symptoms to those caused by dry bubble on Agaricus bisporus, were observed in some Spanish crops during summer 1999. Isolates of Verticillium fungicola from A. bitorquis and A. bisporus were submitted to different temperatures and to prochloraz–Mn sensitivity tests. All the isolates collected from A. bitorquis and A. bisporus were identified as V. fungicola var. fungicola. Artificial infections of A. bisporus and A. bitorquis with V. fungicola var. fungicola are also described in the present study. The appearance of natural infections of V. fungicola var. fungicola in A. bitorquis crops could well be due to the growing temperatures used in Spain, which are considerably below those used in other countries.  相似文献   
115.
Reduced soil N availability under elevated CO2 may limit the plant's capacity to increase photosynthesis and thus the potential for increased soil C input. Plant productivity and soil C input should be less constrained by available soil N in an N2‐fixing system. We studied the effects of Trifolium repens (an N2‐fixing legume) and Lolium perenne on soil N and C sequestration in response to 9 years of elevated CO2 under FACE conditions. 15N‐labeled fertilizer was applied at a rate of 140 and 560 kg N ha?1 yr?1 and the CO2 concentration was increased to 60 Pa pCO2 using 13C‐depleted CO2. The total soil C content was unaffected by elevated CO2, species and rate of 15N fertilization. However, under elevated CO2, the total amount of newly sequestered soil C was significantly higher under T. repens than under L. perenne. The fraction of fertilizer‐N (fN) of the total soil N pool was significantly lower under T. repens than under L. perenne. The rate of N fertilization, but not elevated CO2, had a significant effect on fN values of the total soil N pool. The fractions of newly sequestered C (fC) differed strongly among intra‐aggregate soil organic matter fractions, but were unaffected by plant species and the rate of N fertilization. Under elevated CO2, the ratio of fertilizer‐N per unit of new C decreased under T. repens compared with L. perenne. The L. perenne system sequestered more 15N fertilizer than T. repens: 179 vs. 101 kg N ha?1 for the low rate of N fertilization and 393 vs. 319 kg N ha?1 for the high N‐fertilization rate. As the loss of fertilizer‐15N contributed to the 15N‐isotope dilution under T. repens, the input of fixed N into the soil could not be estimated. Although N2 fixation was an important source of N in the T. repens system, there was no significant increase in total soil C compared with a non‐N2‐fixing L. perenne system. This suggests that N2 fixation and the availability of N are not the main factors controlling soil C sequestration in a T. repens system.  相似文献   
116.
The regulation of surface water pCO2 was studied in a set of 33 unproductive boreal lakes of different humic content, situated along a latitudinal gradient (57°N to 64°N) in Sweden. The lakes were sampled four times during one year, and analyzed on a wide variety of water chemistry parameters. With only one exception, all lakes were supersaturated with CO2 with respect to the atmosphere at all sampling occasions. pCO2 was closely related to the DOC concentration in lakes, which in turn was mainly regulated by catchment characteristics. This pattern was similar along the latitudinal gradient and at different seasons of the year, indicating that it is valid for a variety of climatic conditions within the boreal forest zone. We suggest that landscape characteristics determine the accumulation and subsequent supply of allochthonous organic matter from boreal catchments to lakes, which in turn results in boreal lakes becoming net sources of atmospheric CO2.  相似文献   
117.
红壤旱坡地桔园覆盖的生态效应及经济效益评价   总被引:11,自引:2,他引:9  
柑桔是南方红壤地区栽培的主要果树种类,栽培面积达1126×106hm2。柑桔是一种常绿果树,生长量大,挂果期长,周年需要消耗大量的水分。我国南方红壤地区虽然雨水充沛,但降水季节分布不均,柑桔果实迅速生长的7~10月正是该地区雨水少、蒸发量大的伏秋干旱季节。经常性的伏秋干旱是制约我国柑桔产量和质量进一步提高的主要障碍因素之一。桔园夏秋进行秸秆覆盖可以降温[1]、保水[2]、防止杂草生长[3]等,但桔园应用地膜覆盖及常年连续覆盖对桔园的生态效应方面的研究较少,为此我们开展了这方面的工作,并通过连续3a的产量及产值分析覆盖桔园的经…  相似文献   
118.
Summary Chromosome endoreduplication is a very common process in higher plants but its function and genetic control are still to be clarified. In our experiments we analyzed, by Feulgen cytophotometry, chromosome endoreduplication in endosperm cells of two maize genotypes, IHP and ILP, having high and low protein content in their seed, respectively. Chromosome endoreduplication occurs in both lines within 24 days after pollination, attaining a maximum ploidy level of 384C (7 DNA replication rounds) in IHP and of 192C (6 replication rounds) in ILP. In the mature seed, endosperms of the two lines show different mean ploidy level. In reciprocal crosses between IHP and ILP the f1 endosperms have mean ploidy levels analogous to that of the maternal parent, showing that the difference in ploidy level between the two genotypes is maintained. After selfing of the f1 plants, the difference in ploidy level between the two F2 populations is reduced. In F2 the mean ploidy level is as variable as in f1, indicating the absence of genetic segregation. From our data, it is apparent that both the genetic constitution (cytoplasmic and nuclear) of the maternal parent and the genotype of the individual endosperms influence the ploidy level. An analysis of the protein content in endosperms carried out on the same seed sample as analyzed cytophotometrically showed that the protein content increases, during seed development, parallel to chromosome endoreduplication and varies, in the two lines, in reciprocal crosses and their progeny, according to the same trend as mean ploidy level, suggesting a correlation between the two parameters.  相似文献   
119.
The interaction of mercury and cadmium with lead was investigated by exposingOreochromis aureus to two heavy metals simulataneously. The chronic accumulation prolife of lead was determined by analyzing the liver, brain, gill filaments, intestine, caudal muscle, spleen, trunk kidney, and gonads following exposure to lead alone and in mixtures with mercury and cadmium. Nominal exposure concentrations of lead were 0.05, 0.10, 0.50, and 1.00 mg/L. Mixtures of lead (0.50 or 0.05 mg/L) with cadmium (0.05 mg/L) and lead (0.50 or 0.05 mg/L) with mercury (0.05 mg/L) were also used. Following 140 d of exposure to lead, the highest concentrations of lead consistently accumulated in the trunk kidney. The concentration of lead in the kidney was decreased by coexposure to mercury or cadmium, but increased in the muscle and liver. Under all exposure regimes, the median concentration of lead in the muscle exceeded safety levels recommended for human consumption. In a food fish, such asO. aureus, a knowledge of toxic metal accumulation patterns is of great importance.  相似文献   
120.
In this paper we present a conceptual model of integrated plant-soil interactions which illustrates the importance of identifying the primary belowground feedbacks, both positive and negative, which can simultaneously affect plant growth responses to elevated CO2. The primary negative feedbacks share the common feature of reducing the amount of nutrients available to plants. These negative feedbacks include increased litter C/N ratios, and therefore reduced mineralization rates, increased immobilization of available nutrients by a larger soil microbial pool, and increased storage of nutrients in plant biomass and detritus due to increases in net primary productivity (NPP). Most of the primary positive feedbacks share the common feature of being plant mediated feedbacks, the only exception being Zak et al.'s hypothesis that increased microbial biomass will be accompanied by increased mineralization rates. Plant nutrient uptake may be increased through alterations in root architecture, physiology, or mycorrhizal symbioses. Further, the increased C/N ratios of plant tissue mean that a given level of NPP can be achieved with a smaller supply of nitrogen.Identification of the net plant-soil feedbacks to enhanced productivity with elevated CO2 are a critical first step for any ecosystem. It is necessary, however, that we first identify how universally applicable the results are from one study of one ecosystem before ecosystem models incorporate this information. The effect of elevated CO2 on plant growth (including NPP, tissue quality, root architecture, mycorrhizal symbioses) can vary greatly for different species and environmental conditions. Therefore it is reasonable to expect that different ecosystems will show different patterns of interacting positive and negative feedbacks within the plant-soil system. This inter-ecosystem variability in the potential for long-term growth responses to rising CO2 levels implies that we need to parameterize mechanistic models of the impact of elevated CO2 on ecosystem productivity using a detailed understanding of each ecosystem of interest.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号