首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   7篇
  国内免费   4篇
  2024年   1篇
  2023年   3篇
  2022年   4篇
  2021年   7篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   5篇
  2016年   2篇
  2015年   5篇
  2014年   8篇
  2013年   5篇
  2012年   9篇
  2011年   3篇
  2010年   4篇
  2009年   7篇
  2008年   7篇
  2007年   9篇
  2006年   9篇
  2005年   9篇
  2004年   17篇
  2003年   9篇
  2002年   8篇
  2001年   5篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
排序方式: 共有181条查询结果,搜索用时 15 毫秒
41.
Previous studies have shown that clock genes are expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus, other brain regions, and peripheral tissues. Various peripheral oscillators can run independently of the SCN. However, no published studies have reported changes in the expression of clock genes in the rat central nervous system and peripheral blood mononuclear cells (PBMCs) after withdrawal from chronic morphine treatment. Rats were administered with morphine twice daily at progressively increasing doses for 7 days; spontaneous withdrawal signs were recorded 14 h after the last morphine administration. Then, brain and blood samples were collected at each of eight time points (every 3 h: ZT 9; ZT 12; ZT 15; ZT 18; ZT 21; ZT 0; ZT 3; ZT 6) to examine expression of rPER1 and rPER2 and rCLOCK . Rats presented obvious morphine withdrawal signs, such as teeth chattering, shaking, exploring, ptosis, and weight loss. In morphine-treated rats, rPER1 and rPER2 expression in the SCN, basolateral amygdala, and nucleus accumbens shell showed robust circadian rhythms that were essentially identical to those in control rats. However, robust circadian rhythm in rPER1 expression in the ventral tegmental area was completely phase-reversed in morphine-treated rats. A blunting of circadian oscillations of rPER1 expression occurred in the central amygdala, hippocampus, nucleus accumbens core, and PBMCs and rPER2 expression occurred in the central amygdala, prefrontal cortex, nucleus accumbens core , and PBMCs in morphine-treated rats compared with controls. rCLOCK expression in morphine-treated rats showed no rhythmic change, identical to control rats. These findings indicate that withdrawal from chronic morphine treatment resulted in desynchronization from the SCN rhythm, with blunting of rPER1 and rPER2 expression in reward-related neurocircuits and PBMCs.  相似文献   
42.
The present study investigated hormonal mediation of maternal behavior and accumbal dopamine (DA) responses to pup-stimuli, as measured in microdialysis samples collected from the nucleus accumbens shell of female rats in non-homecage environment. In Experiment 1, samples were collected before and after continuous homecage pup experience from either intact postpartum or cycling females. In Experiment 2, samples were collected before and after responding maternally in homecage from ovariectomized females given either parturient-like hormone or sham treatments. After baseline sample collection in the dialysis chamber, pup and food stimuli were individually presented to females. Upon sampling completion, all animals were placed back into their homecage with donor pups for several days, and then the sample collection procedure was repeated. Prior to stimulus presentation, postpartum and hormone-treated females had decreased basal DA release compared to their controls. In response to pup stimuli, only postpartum and hormone-treated females had increased DA release compared to basal release (both sampling days). In response to food stimuli, all females had increased DA responses from basal; although there were group differences on the initial day of sampling. Findings suggest that hormones associated with inducing maternal behavior in the postpartum rat play a significant role in modifying accumbal dopaminergic responses on first exposure to pup stimuli in the rat. However, the postpartum experience provides further modifications to this brain region to promote DA responses to pup stimuli.  相似文献   
43.
大鼠肠易激综合征模型的建立及其评价   总被引:1,自引:0,他引:1  
目的探讨腹泻型肠易激综合征(D-IBS)动物模型的建立方法,为临床治疗提供依据。方法雄性Wistar大鼠40只,随机分为IBS1(乙酸灌肠加束缚应激)组I、BS2(束缚应激)组、灌肠对照组和正常对照组,采用乙酸灌肠加束缚应激和Williams方法制作IBS动物模型,用腹壁撤退反射(AWR)评分和腹外斜肌放电活动检测对其内脏敏感性进行评估,同时进行组织学检查对肠黏膜组织的组织学改变进行评价。结果两模型组大鼠AWR评分和腹外斜肌收缩次数在不同扩张容量下均较对照组明显增加(P〈0.05)。组织学分析显示各组大鼠均无明显的炎症性表现。结论乙酸灌肠加束缚应激和Williams方法制成的IBS动物模型符合IBS的内脏敏感性机制,可用于IBS的试验研究。  相似文献   
44.
The zebrafish has been in the forefront of developmental genetics for decades and has also been gaining attention in neurobehavioral genetics. It has been proposed to model alcohol-induced changes in human brain function and behavior. Here, adult zebrafish populations, AB and SF (short-fin wild type), were exposed to chronic treatment (several days in 0.00% or 0.50% alcohol v/v) and a subsequent acute treatment (1 h in 0.00%, 0.25%, 0.50% or 1.00% alcohol). Behavioral responses of zebrafish to computer-animated images, including a zebrafish shoal and a predator, were quantified using videotracking. Neurochemical changes in the dopaminergic and serotoninergic systems in the brain of the fish were measured using high-precision liquid chromatography with electrochemical detection. The results showed genetic differences in numerous aspects of alcohol-induced changes, including, for the first time, the behavioral effects of withdrawal from alcohol and neurochemical responses to alcohol. For example, withdrawal from alcohol abolished shoaling and increased dopamine and 3,4-dihydroxyphenylacetic acid in AB but not in SF fish. The findings show that, first, acute and chronic alcohol induced changes are quantifiable with automated behavioral paradigms; second, robust neurochemical changes are also detectable; and third, genetic factors influence both alcohol-induced behavioral and neurotransmitter level changes. Although the causal relationship underlying the alcohol-induced changes in behavior and neurochemistry is speculative at this point, the results suggest that zebrafish will be a useful tool for the analysis of the biological mechanisms of alcohol-induced functional changes in the adult brain.  相似文献   
45.
内分泌激素是维持妊娠和启动分娩的重要因素。孕激素是静息子宫、维持妊娠的主要激素,而糖皮质激素、前列腺素和雌激素等激素则与分娩启动密切相关。孕激素水平的下降是很多哺乳类动物分娩启动的前提条件,然而有些哺乳类动物包括灵长类在整个妊娠过程包括分娩中均维持着高水平的孕激素,此现象令人费解。越来越多的证据表明,人类分娩启动时孕激素同样出现了撤退,但是发生在孕激素的受体水平,主要表现为孕激素受体亚型表达比值和孕激素受体转录辅助因子表达的改变。本文比较了人类和其它哺乳类动物分娩启动时孕激素撤退的三种模式,即黄体溶解、胎盘P450c17羟化酶上调和孕激素受体功能改变,旨在进一步阐明人类分娩启动机制,从而为防治早产提供新的思路。  相似文献   
46.
47.
He JH  Cao JL  Xu YB  Song XS  Ding HL  Zeng YM 《生理学报》2005,57(5):557-565
在大鼠吗啡依赖和戒断模型上,采用行为学、免疫组织化学和Western blot方法观察吗啡依赖及戒断大鼠脊髓神经元磷酸化细胞外信号调节激酶(phospho-extracellular signal-regulated kinase,pERK)表达的变化,及鞘内注射促分裂原活化蛋白激酶激酶(mitogen-activated protein kinase kinase,MEK)抑制剂U0126或ERK反义寡核苷酸对吗啡依赖大鼠纳洛酮催促戒断反应、触诱发痛及脊髓神经元pERK表达的影响,探讨脊髓水平pERK在介导吗啡依赖和戒断过程中的作用。结果显示:(1)在吗啡依赖形成过程中,大鼠脊髓胞浆与胞核非磷酸化ERK表达没有改变,但pERK表达逐渐增加,纳洛酮催促戒断后,仍有进一步增加的趋势,戒断1h后,其表达量明显下降,但仍高于对照组。(2)鞘内预先注射MEK抑制剂U0126或ERK反义寡核苷酸能明显抑制吗啡戒断反应和戒断引起的痛觉异常;与行为学结果一致,脊髓背角pERK阳性神经元表达与脊髓胞浆和胞核pERK表达也明显降低。上述结果提示,脊髓水平ERK激活和核转位参与吗啡依赖的形成及戒断反应的表达。  相似文献   
48.
Much evidence supports the hypothesis that A2A adenosine receptors play an important role in the expression of morphine withdrawal and that the dopaminergic system might also be involved. We have evaluated morphine withdrawal signs in wild-type and A2A receptor knockout mice and shown a significant enhancement in some withdrawal signs in the knockout mice. In addition, micro -opioid and dopamine D2 receptor autoradiography, as well as micro -opioid receptor-stimulated guanylyl 5'-[gamma-[35S]thio]-triphosphate ([35S]GTPgammaS) autoradiography was carried out in brain sections of withdrawn wild-type and knockout mice. No significant changes in D2 and micro -opioid receptor binding were observed in any of the brain regions analysed. However, a significant increase in the level of micro receptor-stimulated [35S]GTPgammaS binding was observed in the nucleus accumbens of withdrawn knockout mice. These data indicate that the A2A receptor plays a role in opioid withdrawal related to functional receptor activation.  相似文献   
49.
In this study, we determined the efficacy of minocycline, a second generation tetracycline, in preventing male germ cell apoptosis after withdrawal of gonadotropins and intratesticular testosterone (T). Groups of 5 male rats received one of the following treatments daily for 5 days: (i) daily sc injection of GnRH-A (1.6 mg/kg BW), (ii) oral administration of 30% gum acacia as a vehicle control, and (iii) GnRH-A + oral administration of 50 or 100 mg/kg BW of minocycline. Minocycline at both 50 and 100 mg dose levels significantly (P < 0.05) prevented GnRH-A -induced germ cell apoptosis by 59.4% and 62.2%, respectively, and fully prevented PARP cleavage. Minocycline-mediated protection occurred at the mitochondria, involving the restoration of the BCL-2 levels and, in turn, suppression of cytochrome c and DIABLO release. Minocycline was also effective in preventing human male germ cell apoptosis induced by hormone free culture condition.  相似文献   
50.
Oh S  Kim JI  Chung MW  Ho IK 《Neurochemical research》2000,25(12):1603-1611
The NMDA receptor has been implicated in opioid tolerance and withdrawal. The effects of continuous infusion of butorphanol on the modulation of NMDA receptor subunit NR1, NR2A, NR2B, and NR2C gene expression were investigated by using in situ hybridization technique. Continuous intracerebroventricular (i.c.v.) infusion with butorphanol (26 nmol/l/h) resulted in significant modulations in the NR1, NR2A, and NR2B mRNA levels. The level of NR1 mRNA was significantly decreased in the cerebral cortex, thalamus, and CA1 area of hippocampus in butorphanol tolerant and withdrawal (7 h after stopping the infusion) rats. The NR2A mRNA was significantly decreased in the CA1 and CA3 of hippocampus in tolerant rats and increased in the cerebral cortex and dentate gyrus in butorphanol withdrawal rats. NR2B subunit mRNA was decreased in the cerebral cortex, caudate putamen, thalamus, CA3 of hippocampus in butorphanol withdrawal rats. No changes of NR1, NR2A, NR2C subunit mRNA in the cerebellar granule cell layer were observed in either butorphanol tolerant or withdrawal rats. Using quantitative ligand autoradiography, the binding of NMDA receptor ligand [3H]MK-801 was increased significantly in all brain regions except in the thalamus and hippocampus, at the 7 hr after stopping the butorphanol infusion. These results suggest that region-specific changes of NMDA receptor subunit mRNA (NR 1 and NR2) as well as NMDA receptor binding ([3H]MK-801) are involved in the development of tolerance to and withdrawal from butorphanol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号