首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44335篇
  免费   17485篇
  国内免费   169篇
  2024年   5篇
  2023年   56篇
  2022年   59篇
  2021年   493篇
  2020年   2860篇
  2019年   4399篇
  2018年   4661篇
  2017年   4643篇
  2016年   4344篇
  2015年   4199篇
  2014年   4137篇
  2013年   4502篇
  2012年   3884篇
  2011年   4019篇
  2010年   3532篇
  2009年   2372篇
  2008年   2520篇
  2007年   1936篇
  2006年   1956篇
  2005年   1659篇
  2004年   1276篇
  2003年   1399篇
  2002年   1189篇
  2001年   902篇
  2000年   463篇
  1999年   293篇
  1998年   31篇
  1997年   40篇
  1996年   29篇
  1995年   23篇
  1994年   22篇
  1993年   24篇
  1992年   20篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
  1988年   4篇
  1987年   6篇
  1986年   4篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
A novel low‐cost nanoporous polytetrafluoroethylene (PTFE)/silica composite separator has been prepared and evaluated for its use in an all‐vanadium redox flow battery (VRB). The separator consists of silica particles enmeshed in a PTFE fibril matrix. It possesses unique nanoporous structures with an average pore size of 38 nm and a porosity of 48%. These pores function as the ion transport channels during redox flow battery operation. This separator provides excellent electrochemical performance in the mixed‐acid VRB system. The VRB using this separator delivers impressive energy efficiency, rate capability, and temperature tolerance. In additon, the flow cell using the novel separator also demonstrates an exceptional capacity retention capability over extended cycling, thus offering excellent stability for long‐term operation. The characteristics of low cost, excellent electrochemical performance and proven chemical stability afford the PTFE/silica nanoporous separator great potential as a substitute for the Nafion membrane used in VRB applications.  相似文献   
992.
Layered sodium titanium oxide, Na2Ti3O7, is synthesized by a solid‐state reaction method as a potential anode for sodium‐ion batteries. Through optimization of the electrolyte and binder, the microsized Na2Ti3O7 electrode delivers a reversible capacity of 188 mA h g?1 in 1 M NaFSI/PC electrolyte at a current rate of 0.1C in a voltage range of 0.0–3.0 V, with sodium alginate as binder. The average Na storage voltage plateau is found at ca. 0.3 V vs. Na+/Na, in good agreement with a first‐principles prediction of 0.35 V. The Na storage properties in Na2Ti3O7 are investigated from thermodynamic and kinetic aspects. By reducing particle size, the nanosized Na2Ti3O7 exhibits much higher capacity, but still with unsatisfied cyclic properties. The solid‐state interphase layer on Na2Ti3O7 electrode is analyzed. A zero‐current overpotential related to thermodynamic factors is observed for both nano‐ and microsized Na2Ti3O7. The electronic structure, Na+ ion transport and conductivity are investigated by the combination of first‐principles calculation and electrochemical characterizations. On the basis of the vacancy‐hopping mechanism, a quasi‐3D energy favorable trajectory is proposed for Na2Ti3O7. The Na+ ions diffuse between the TiO6 octahedron layers with pretty low activation energy of 0.186 eV.  相似文献   
993.
We explore the interrelation between density of states, recombination kinetics, and device performance in efficient poly[4,8‐bis‐(2‐ethylhexyloxy)‐benzo[1,2‐b:4,5‐b']dithiophene‐2,6‐diyl‐alt‐4‐(2‐ethylhexyloxy‐1‐one)thieno[3,4‐b]thiophene‐2,6‐diyl]:[6,6]‐phenyl‐C71‐butyric acid methyl ester (PBDTTT‐C:PC71BM) bulk‐heterojunction organic solar cells. We modulate the active‐layer density of states by varying the polymer:fullerene composition over a small range around the ratio that leads to the maximum solar cell efficiency (50–67 wt% PC71BM). Using transient and steady‐state techniques, we find that nongeminate recombination limits the device efficiency and, moreover, that increasing the PC71BM content simultaneously increases the carrier lifetime and drift mobility in contrast to the behavior expected for Langevin recombination. Changes in electronic properties with fullerene content are accompanied by a significant change in the magnitude or energetic separation of the density of localized states. Our comprehensive approach to understanding device performance represents significant progress in understanding what limits these high‐efficiency polymer:fullerene systems.  相似文献   
994.
The surface properties of CuInS2 (CIS) thin‐film solar cell absorbers are investigated by a combination of electron and soft X‐ray spectroscopies. Spatially separated regions of varying colors are observed and identified to be dominated by either CuS or Cu2S surface phases. After their removal by KCN etching, the samples cannot be distinguished by eye and the CIS surface is found to be Cu‐deficient in both regions. However, a significantly more pronounced off‐stoichiometry in the region initially covered by Cu2S can be identified. In this region, the resulting surface band gap is also significantly larger than the EgSurf of the initially CuS‐terminated region. Such variations may represent a hidden parameter which, if overlooked, induces irreproducibility and thus prevents systematic optimization efforts.  相似文献   
995.
996.
Organic redox compounds are emerging electrode materials for rechargeable lithium batteries. However, their electrically insulating nature plagues efficient charge transport within the electroactive bulk. Alternative to the popular solution of elaborating nanocomposite materials, herein we report on a molecular‐level engineering strategy towards high‐power organic electrode materials with multi‐electron reactions. Systematic comparisons of anthraquinone analogues incorporating fused heteroaromatic structures as cathode materials in rechargeable lithium batteries reveal that the judicious incorporation of heteroaromatics improves the cell performance in terms of specific gravimetric capacity, working potential, rate capability, and cyclability. Combination studies with morphological observation, electrochemical impedance characterization, and theoretical modeling provide insight into the advantage of heteroaromatic building blocks. In particular, benzofuro[5,6‐b]furan‐4,8‐dione ( BFFD ) bearing furan moeities shows a reversible capacity of 181 mAh g?1 when charged/discharged at 100C, corresponding to a power density of 29.8 kW kg?1. These results have pointed to a general design route of high‐rate organic electrode materials by rational functionalization of redox compounds with appropriate heteroaromatic units as versatile structural tools.  相似文献   
997.
Mechanochemical synthesis of Cu3P in the presence of n‐dodecane results in a material with a secondary particle size distribution of 10 μm, secondary particles which consist of homogeneously agglomerated 20 nm primary particles. The electrochemical performance of Cu3P with lithium is influenced by the reaction depth, in other words by the lower potential cut‐off. During the electrochemical reaction, the displacement of copper by lithium from the Cu3P structure until the formation of Li3P and Cu deteriorates the capacity retention. Improved performance was obtained when the charge potential was limited to 0.50 V (vs. Li/Li+) and the formation of the LixCu3‐xP phase (0 ≤ × ≤ 2). In this case, when the potential is limited to 0.5 V, the capacity is stable for more than 50 cycles. Acceptable electrochemical performances in Li‐ion cells within the voltage range 0.50–2.0 V (vs. Li/Li+) were shown when Cu3P was used as an anode and Li1.2(Ni0.13Mn0.54Co0.13)O2 and LiNi0.5Mn1.5O4 as positive electrode materials.  相似文献   
998.
The electrochemical performance of mesoporous carbon (C)/tin (Sn) anodes in Na‐ion and Li‐ion batteries is systematically investigated. The mesoporous C/Sn anodes in a Na‐ion battery shows similar cycling stability but lower capacity and poorer rate capability than that in a Li‐ion battery. The desodiation potentials of Sn anodes are approximately 0.21 V lower than delithiation potentials. The low capacity and poor rate capability of C/Sn anode in Na‐ion batteries is mainly due to the large Na‐ion size, resulting in slow Na‐ion diffusion and large volume change of porous C/Sn composite anode during alloy/dealloy reactions. Understanding of the reaction mechanism between Sn and Na ions will provide insight towards exploring and designing new alloy‐based anode materials for Na‐ion batteries.  相似文献   
999.
A joint experimental and theoretical study of singlet exciton diffusion in spin‐coated poly(3‐hexylthiophene) (P3HT) films and its dependence on molecular weight is presented. The results show that exciton diffusion is fast along the co‐facial ππ aggregates of polymer chromophores and about 100 times slower in the lateral direction between aggregates. Exciton hopping between aggregates is found to show a subtle dependence on interchain coupling, aggregate size, and Boltzmann statistics. Additionally, a clear correlation is observed between the effective exciton diffusion coefficient, the degree of aggregation of chromophores, and exciton delocalization along the polymer chain, which suggests that exciton diffusion length can be enhanced by tailored synthesis and processing conditions.  相似文献   
1000.
Japanese encephalitis virus (JEV) nonstructural protein 5 (NS5) exhibits a Type I interferon (IFN) antagonistic function. This study characterizes Type I IFN antagonism mechanism of NS5 protein, using proteomic approach. In human neuroblastoma cells, NS5 expression would suppress IFNβ‐induced responses, for example, expression of IFN‐stimulated genes PKR and OAS as well as STAT1 nuclear translocation and phosphorylation. Proteomic analysis showed JEV NS5 downregulating calreticulin, while upregulating cyclophilin A, HSP 60 and stress‐induced‐phosphoprotein 1. Gene silence of calreticulin raised intracellular Ca2+ levels while inhibiting nuclear translocalization of STAT1 and NFAT‐1 in response to IFNβ, thus, indicating calreticulin downregulation linked with Type I IFN antagonism of JEV NS5 via activation of Ca2+/calicineurin. Calcineurin inhibitor cyclosporin A attenuated NS5‐mediated inhibition of IFNβ‐induced responses, for example, IFN‐sensitive response element driven luciferase, STAT1‐dependent PKR mRNA expression, as well as phosphorylation and nuclear translocation of STAT1. Transfection with calcineurin (vs. control) siRNA enhanced nuclear translocalization of STAT1 and upregulated PKR expression in NS5‐expressing cells in response to IFNβ. Results prove Ca2+, calreticulin, and calcineurin involvement in STAT1‐mediated signaling as well as a key role of JEV NS5 in Type I IFN antagonism. This study offers insights into the molecular mechanism of Type I interferon antagonism by JEV NS5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号