首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   90篇
  国内免费   15篇
  2024年   3篇
  2023年   4篇
  2022年   5篇
  2021年   3篇
  2020年   18篇
  2019年   24篇
  2018年   38篇
  2017年   25篇
  2016年   20篇
  2015年   19篇
  2014年   19篇
  2013年   28篇
  2012年   13篇
  2011年   10篇
  2010年   9篇
  2009年   10篇
  2008年   7篇
  2007年   7篇
  2006年   10篇
  2005年   5篇
  2004年   9篇
  2003年   2篇
  2002年   6篇
  2001年   5篇
  2000年   10篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   5篇
  1994年   7篇
  1993年   4篇
  1992年   5篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
排序方式: 共有350条查询结果,搜索用时 437 毫秒
51.
52.
The advancement of electrochemical energy storage is closely bound up with the breakthrough of controllable fabrication of energy materials. Inspired by a popcorn fabrication from corn raw, herein a unique porous macrocellular carbon composed of cross‐linked nano/microsheets by a powerful puffing of rice precursor is described. The rice is directly puffed with a volume enlargement of ≈20 times when it is instantaneously released from a sealed environment with a high pressure of 1.0 MPa at 200 °C. Interestingly, when metal (e.g., Ni) nanoparticles are embedded in the puffed rice derived carbon (PRC), high‐quality PRC/metal composites are achieved with attractive properties of a high electrical conductivity of ≈7.2 × 104 S m?1, a large porosity of 85.1%, and a surface area of 1492.2 m2 g?1. The PRC/Ni are employed as a host in lithium–sulfur batteries. The designed PRC/Ni/S electrode exhibits a high reversible capacity of 1257.2 mA h g?1 at 0.2 C, a prolonged cycle life (821 mA h g?1 after 500 cycles), and enhanced rate capability, much better than other counterparts (PRC/S and rGO/S). The excellent properties are attributed to the advantages of PRC/Ni network with a high electrical conductivity, strong adsorption/blocking ability for polysulfides, and interconnected porous framework.  相似文献   
53.
Gold nanoparticles serve as imaging contrast agents useful for two‐photon nonlinear microscopy of biological cells and tissues. In this study, 100‐nm‐sized gold particles with a multitude of nanopores embedded inside have been physically synthesized and investigated for the plasmonic enhancement in two‐photon luminescence. Exhibiting remarkable potential for two‐photon imaging, the porous gold nanoparticles boost near‐infrared light absorption substantially and allow emission signals 20 times brighter than gold nanorods being currently used as typical imaging agents. Further details can be found in the article by Joo H. Park et al. ( e201700174 )

  相似文献   

54.
Only a decade after Van Wezel introduced the first product made in microcarrier cultures on industrial scale at economically acceptable costs, namely Inactivated Polio Vaccine (IPV), interest was taken in this revolutionary type of cell growth system. The basic idea was to develop a culture system with equal potentials for control of environmental culture conditions and scaling up as the systems used in industrial microbiology. Although initially only positively-charged beads were used it soon became clear that negatively-charged or amphoteric materials such as proteins or amino acids polymerized to the surface were equally useful. Eventually numerous different types of microcarrier were developed. The second generation of microcarriers consisted of macroporous beads providing increased surface area for cell attachment and growth by external and interior space. Such microcarriers offer great potential for high cell densities and enhanced productivity for certain production systems, especially recombinant CHO-cells. These carriers, which not only provide possibilities for anchorage-dependent cells but also for cells growing suspension, can be used in homogeneous bioreactors as well as in fluidized or fixed-bed systems. Despite considerable in vestments and research on the development and improvement of microcarriers one question is still open: is microcarrier technology still in its infancy or is it full-grown and is the basic idea relized? In this paper a general overview will be given of the present state of microcarrier technology and also of its perspectives.  相似文献   
55.
A robust, naturally evolving methanotrophic community in landfill cover soil (LFCS) can be the simplest way to mitigate landfill methane emission. In this study, bacterial community composition in LFCS and methane oxidation potential of enriched methanotrophic consortium, in comparison to that of axenic Methylosinus sporium, was investigated. Growth and methane oxidation of the consortium was studied in liquid phase batch experiments under varying temperature (20–40°C), pH (5–10), headspace CO2, and in presence of porous adsorbent (1.3 cm3 sponge cubes). The 16S rRNA gene analysis revealed presence of both type-I and type-II methanotrophs along with few obligate methylotroph in LFCS. Though the optimal growth condition of the consortium was at 30°C and pH 7, it was more resilient in comparison to M. sporium. With increasing availability of porous adsorbent, methane consumption by the consortium was significantly improved (p < 0.001) reaching a maximum specific methane oxidation rate of 11.4 μmol mg?1 biomass h?1. Thus, inducing naturally thriving methanotrophs in LFCS is a better alternative to axenic methanotrophic culture in methane emission management.  相似文献   
56.
The flow of power law fluids, which include shear thinning and shear thickening as well as Newtonian as a special case, in networks of interconnected elastic tubes is investigated using a residual-based pore scale network modeling method with the employment of newly derived formulae. Two relations describing the mechanical interaction between the local pressure and local cross-sectional area in distensible tubes of elastic nature are considered in the derivation of these formulae. The model can be used to describe shear dependent flows of mainly viscous nature. The behavior of the proposed model is vindicated by several tests in a number of special and limiting cases where the results can be verified quantitatively or qualitatively. The model, which is the first of its kind, incorporates more than one major nonlinearity corresponding to the fluid rheology and conduit mechanical properties, that is non-Newtonian effects and tube distensibility. The formulation, implementation, and performance indicate that the model enjoys certain advantages over the existing models such as being exact within the restricting assumptions on which the model is based, easy implementation, low computational costs, reliability, and smooth convergence. The proposed model can, therefore, be used as an alternative to the existing Newtonian distensible models; moreover, it stretches the capabilities of the existing modeling approaches to reach non-Newtonian rheologies.  相似文献   
57.
The mechanical properties of well-ordered porous materials are related to their geometrical parameters at the mesoscale. Finite element (FE) analysis is a powerful tool to design well-ordered porous materials by analysing the mechanical behaviour. However, FE models are often computationally expensive. This article aims to develop a cost-effective FE model to simulate well-ordered porous metallic materials for orthopaedic applications. Solid and beam FE modelling approaches are compared, using finite size and infinite media models considering cubic unit cell geometry. The model is then applied to compare two unit cell geometries: cubic and diamond. Models having finite size provide similar results than the infinite media model approach for large sample sizes. In addition, these finite size models also capture the influence of the boundary conditions on the mechanical response for small sample sizes. The beam FE modelling approach showed little computational cost and similar results to the solid FE modelling approach. Diamond unit cell geometry appeared to be more suitable for orthopaedic applications than the cubic unit cell geometry.  相似文献   
58.
Hard carbons are considered among the most promising anode materials for Na‐ion batteries. Understanding their structure is of great importance for optimizing their Na storage capabilities and therefore achieving high performance. Herein, carbon nanofibers (CNFs) are prepared by electrospinning and their microstructure, texture, and surface functionality are tailored through carbonization at various temperatures ranging from 650 to 2800 °C. Stepwise carbonization gradually removes the heteroatoms and increases the graphitization degree, enabling us to monitor the corresponding electrochemical performance for establishing a correlation between the CNFs characteristics and Na storage behavior. Outstandingly, it is found that for CNFs carbonized at above 2000 °C, a single voltage Na uptake plateau at ≈0.1 V with a capacity of ≈200 mAh g‐1. This specific performance may be nested in the higher degree of graphitization, lower active surface area, and different porous texture of the CNFs at such temperatures. It is demonstrated via the assembly of a CNF/Na2Fe2(SO4)3 cell the benefit of such CNFs electrode for enhancing the energy density of full Na‐ion cells. This finding sheds new insights in the quest for high performance carbon based anode materials.  相似文献   
59.
Hierarchically porous nitrogen‐doped carbon (HPC)/polyaniline (PANI) nanowire arrays nanocomposites are synthesized by a facile in situ polymerization. 3D interconnected honeycomb‐like HPC was prepared by a cost‐effective route via one‐step carbonization using urea and alkali‐treated wheat flour as carbon precursor with a high specific surface area (1294 m2 g?1). The specific capacitances of HPC and HPC/PANI (with a surface area of 923 m2 g?1) electrode are 383 and 1080 F g?1 in 1 m H2SO4, respectively. Furthermore, an asymmetric supercapacitor based on HPC/PANI as positive electrode and HPC as negative electrode is successfully assembled with a voltage window of 0–1.8 V in 1 m Na2SO4 aqueous electrolyte, exhibiting high specific capacitance (134 F g?1), high energy density (60.3 Wh kg?1) and power density (18 kW kg?1), and excellent cycling stability (91.6% capacitance retention after 5000 cycles).  相似文献   
60.
A simple and template‐free method for preparing three‐dimensional (3D) porous γ‐Fe2O3@C nanocomposite is reported using an aerosol spray pyrolysis technology. The nanocomposite contains inner‐connected nanochannels and γ‐Fe2O3 nanoparticles (5 nm) uniformly embedded in a porous carbon matrix. The size of γ‐Fe2O3 nanograins and carbon content can be controlled by the concentration of the precursor solution. The unique structure of the 3D porous γ‐Fe2O3@C nanocomposite offers a synergistic effect to alleviate stress, accommodate large volume change, prevent nanoparticles aggregation, and facilitate the transfer of electrons and electrolyte during prolonged cycling. Consequently, the nanocomposite shows high‐rate capability and long‐term cyclability when applied as an anode material for Na‐ion batteries (SIBs). Due to the simple one‐pot synthesis technique and high electrochemical performance, 3D porous γ‐Fe2O3@C nanocomposites have a great potential as anode materials for rechargeable SIBs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号