首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8040篇
  免费   853篇
  国内免费   1914篇
  2024年   44篇
  2023年   185篇
  2022年   180篇
  2021年   247篇
  2020年   324篇
  2019年   333篇
  2018年   323篇
  2017年   332篇
  2016年   373篇
  2015年   348篇
  2014年   335篇
  2013年   474篇
  2012年   340篇
  2011年   380篇
  2010年   290篇
  2009年   358篇
  2008年   382篇
  2007年   408篇
  2006年   381篇
  2005年   407篇
  2004年   296篇
  2003年   339篇
  2002年   299篇
  2001年   279篇
  2000年   216篇
  1999年   240篇
  1998年   217篇
  1997年   197篇
  1996年   209篇
  1995年   196篇
  1994年   176篇
  1993年   194篇
  1992年   182篇
  1991年   143篇
  1990年   163篇
  1989年   172篇
  1988年   164篇
  1987年   103篇
  1986年   92篇
  1985年   93篇
  1984年   91篇
  1983年   47篇
  1982年   56篇
  1981年   40篇
  1980年   30篇
  1979年   28篇
  1978年   31篇
  1977年   17篇
  1976年   13篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
Rhizome dynamics and resource storage in Phragmites australis   总被引:6,自引:1,他引:5  
Seasonal changes in rhizome concentrations of total nonstructural carbohydrates (TNC), water soluble carbohydrates (WSC), and mineral nutrients (N, P and K) were monitored in two Phragmites australis stands in southern Sweden. Rhizome biomass, rhizome length per unit ground area, and specific weight (weight/ length ratio) of the rhizomes were monitored in one of the stands.Rhizome biomass decreased during spring, increased during summer and decreased during winter. However, changes in spring and summer were small (< 500 g DW m-2) compared to the mean rhizome biomass (approximately 3000 g DW m–2). Winter losses were larger, approximately 1000 g DW m-2, and to a substantial extent involved structural biomass, indicating rhizome mortality. Seasonal changes in rhizome length per unit ground area revealed a rhizome mortality of about 30% during the winter period, and also indicated that an intensive period of formation of new rhizomes occurred in June.Rhizome concentrations of TNC and WSC decreased during the spring, when carbohydrates were translocated to support shoot growth. However, rhizome standing stock of TNC remained large (> 1000 g m–2). Concentrations and standing stocks of mineral nutrients decreased during spring/ early summer and increased during summer/ fall. Only N, however, showed a pattern consistent with a spring depletion caused by translocation to shoots. This pattern indicates sufficient root uptake of P and K to support spring growth, and supports other evidence that N is generally the limiting mineral nutrient for Phragmites.The biomass data, as well as increased rhizome specific weight and TNC concentrations, clearly suggests that reloading of rhizomes with energy reserves starts in June, not towards the end of the growing season as has been suggested previously. This resource allocation strategy of Phragmites has consequences for vegetation management.Our data indicate that carbohydrate reserves are much larger than needed to support spring growth. We propose that large stores are needed to ensure establishment of spring shoots when deep water or stochastic environmental events, such as high rhizome mortality in winter or loss of spring shoots due to late season frost, increase the demand for reserves.  相似文献   
102.
ACladosporium species produced large amounts of cellulase enzyme components when grown in shake-culture with medium containing carboxymethylcellulose. There was significantly less activity when Avicel, filter paper or cotton were used as substrates. KNO3 was better than NH4Cl or urea for the production of cellulase. Tween 80 at 0.1% (w/v) increased the production of cellulase by 1.5 to 4.5-fold. All the cellulase components were optimally active in the assay at pH 5.0 and 60°C.  相似文献   
103.
The mineral composition of deepwater rice (cultivar Kartik Sail) was studied during 1986 in a field near Sonargaon, Bangladesh, which is flooded by water from R. Meghna. Samples were taken four times, once prior to flooding and three times during the flood season. On two of the latter days (10 August = end of first flood peak, 23 September = second flood peak) the study was extended to other components of the ecosystem (sediments + soil, water, other aquatic macrophytes). On 23 September, 32% of the mass of the plant was out of water, 65% in water and 3% in sediment/soil. There were marked differences between elements in their pattern of accumulation by deepwater rice through the season. In comparison with the final totals for each element, about 48% of N, but only 11% of P and 10% of Na had been accumulated by the time the floodwater had arrived. The aquatic roots doubled in mass between the times of the two flood peaks and it is suggested that much of the P taken up by the plant may reach the plant via its aquatic roots after having becoming mobilized and released to the water when sediments become anaerobic. In comparison with other parts of the plant, Na was always much higher in the stem and Zn in the basal roots.Other aquatic macrophytes (weeds) increased from 0.40% of the mass (dry weight) of deepwater rice on 10 August to 4.0% on 23 September. However their content of each element (% dry weight) was considerably higher than that in deepwater rice, so they may at times compete effectively with the rice for nutrients. During the flood period (to 23 September) weeds accumulated 16% of the N accumulated by rice during the same period.  相似文献   
104.
Factors influencing nitrate depletion in a rural stream   总被引:3,自引:3,他引:0  
Alan R. Hill 《Hydrobiologia》1988,160(2):111-122
A mass balance procedure was used to analyze rates of nitrate depletion in three adjacent reaches of West Duffin Creek, Ontario, Canada. Daily nitrate losses in individual reaches were highly variable (0.5–24 kg N) during low and moderate stream flows in May–October, 1982–1985. Nitrate removal efficiency (nitrate loss as a % of nitrate input) showed a rapid exponential decline with increased nitrate inputs to each reach. Nitrate losses and nitrate removal efficiency also had a significant negative correlation with stream discharge. The association of large nitrate loads with high stream discharge reduced the nitrate removal capacity of the stream because of shorter residence times and a higher ratio of water volume to stream bed area. Water temperature exhibited a significant positive correlation with nitrate loss which may reflect increased denitrification at higher temperatures.Variations in nitrate losses and nitrate removal efficiency between the three reaches were highly influenced by differences in water residence time. Standarized nitrate losses with respect to water residence time revealed a longitudinal decline in nitrate depletion between the reaches which was associated with a downstream decrease in stream nitrate concentration and in the organic carbon content of fine textured sediments from pool habitats.  相似文献   
105.
  1. Aquatic macrophytes formed dense beds in fallow areas during the four and a half months of the flood season in all but one deepwater rice-growing location in Bangladesh; these included several types of life-form, but the fine-leaved species, Myriophyllum sp., Najas indica, Utricularia stellaris were often especially abundant. The same species grew inside deepwater rice fields, but at much lower densities. A similar contrast occurred for the algae, although deepwater rice often developed dense masses of epiphytes on aquatic roots, stems and leaf sheaths, when plants were growing in isolated, well-illuminated situations.
  2. Two widespread algae, Aulosira fertilissima and Scytonema mirabile, were equally successful on soil in the period prior to the arrival of floodwaters and floating on the surface of the water during the flood season. Other species common during the flood season differed from those common on soil.
  3. Most blue-green algae inside deepwater rice fields were heterocystous; the only species not so, but forming distinct colonies, was Aphanothece stagnina. However only non-heterocystous forms were found at one location in south Bangladesh (Phaltita) and a change from heterocystous to non-heterocystous forms was noted at the main research site (near Sonargaon) during late September in at least one year. The water column at the former was almost entirely anoxic, while the change at the latter occurred at a time when the water sometimes became anoxic during the night. It is suggested that differences in ability to tolerate anoxic periods may be a key factor in determining the success of the algal and vascular plant species in the different micro-habitats within these DWR-growing areas.
  4. Although diatoms were quantitatively only a minor component of the algal biomass, they became more frequent later in the season when the water became microaerobic or anoxic for part of the day. Navicula confervacea was overall the most abundant species at the two main research locations.
  相似文献   
106.
Water hyacinth productivity and detritus accumulation   总被引:2,自引:1,他引:1  
Water hyacinth [Eichhornia crassipes (Mart) Solms] productivity and detritus accumulation were evaluated in eutrophic lake water with and without added nutrients (fertilized and control reservoirs, respectively). Seasonal changes in plant productivity and detritus accumulation were determined at monthly intervals for one year. Significant differences were observed in plant productivity between seasons and nutrient additions. Seasonal plant productivity ranged from 1.9 to 23.1 mg (dry wt) ha−1 for the fertilized reservoir and −0.2 to 10.2 mg ha−1 for the control reservoir. Detritus accumulation was not significantly different between seasons or nutrient additions. Seasonal N assimilation by plants ranged from 34 to 242 kg N ha−1 for plants in the fertilized reservoir and < 0 to 104 kg N ha−1 for plants in the control reservoir. Annual net N recovered in detritus represented 21 and 28% of the total N removed by plants in the fertilized and control reservoirs, respectively. Net N loading to the reservoirs from detritus was 92 to 148 kg N ha−1 yr−1.  相似文献   
107.
When acutely transferred to diluted seawater (SW), Procephalothrix spiralis and Clitellio arenarius regulate water content (g H2O/g solute free dry wt = s.f.d.w.) via loss of Na and Cl (µmoles/g.s.f.d.w.). The present study extends these observations to a greater range of salinities and determines the effects of long-term, stepwise acclimation to diluted seawaters. Final exposure to a given experimental seawater (70, 50, 30, 15%) was 48 hours. Osmolality (mOsm/kg H2O) and Na, K, and Cl ion concentrations (mEq/l) were determined in total tissue water and in the extracellular fluid of C. arenarius. Extracellular volume was determined as the 14C-polyethylene glycol space. Both species behaved as hyperosmotic conformers in diluted seawaters. However, reduction of the osmotic gradient between worm and medium occurred in P. spiralis, but not C. arenarius, in 30 and 15% SW. In both species, osmolality and Na, Cl, and K concentrations in total tissue water decreased with increased dilution of the SW. Water content increased with dilution of the medium but was lower than that which would be predicted based on approximation of the van't Hoff relation. This indicated the occurrence of regulatory volume decrease (RVD). In P. spiralis, in 70 or 50% SW, RVD was accompanied by loss of Na and Cl contents. However, in 30 or 15% SW, Na and Cl contents increased and in worms in 15% SW K content decreased. The latter movements of Na, Cl and K are indicative of cellular hysteresis and were associated with decreased viability, indicating the lower limits of regulatory ability in this species. In comparison, RVD in C. arenarius occurred in all diluted seawaters and was accompanied by loss of Na and Cl contents. In C. arenarius, evidence for reduced viability was absent. Removal of the supra- and subesophageal ganglia of C. arenarius resulted in retention of water, Na and Cl (g H2O or µmoles/g s.f.d.w.) in worms acclimated to 70% SW. Removal of the cerebral ganglia and cephalic glands of P. spiralis did not significantly influence regulation of water content.  相似文献   
108.
A method is described for the measurement of the carbon and nitrogen content of particulate material in natural waters. Particulate material is separated by filtration through GF/C filters. The dried filter is encapsulated in silver foil using a purpose made press. Analysis is carried out using high temperature combustion with thermal conductivity detection of emission gasses. Analytical performance characteristics obtained with both standards and natural materials are given.  相似文献   
109.
Summary Swiss mouse 3T3 cells grown on microcarrier beads were superfused with electrolyte solution during continuous NMR analysis. Conventional31P and19F probes of intracellular pH (pH c ) were found to be impracticable. Cells were therefore superfused with 1 to 4mm 2-deoxyglucose, producing a large intracellular, pH-sensitive signal of 2-deoxyglucose phosphate (2DGP). The intracellular incorporation of 2DGP inhibited the Embden-Meyerhof pathway. However, intracellular ATP was at least in part retained and the cellular responsivity to changes in extracellular ionic composition and to the application of growth factors proved intact. Transient replacement of external Na+ with choline or K+ reversibly acidified the intracellular fluids. Quiescent cells and mitogenically stimulated cells displayed the same dependence of shifts in pH c on external Na+ concentration (c Na o ). pH c also depended on intracellular Na+ concentration (c Na o ). Increasingc Na c by withdrawing external K+ (thereby inhibiting the Na,K-pump) caused reversible intracellular acidification; subsequently reducingc Na o produced a larger acid shift in pH c than with external K+ present. Comparison of separate preparations indicated that pH c was higher in stimulated than in quiescent cells. Transient administration of mitogens also reversibly alkalinized quiescent cells studied continuously. This study documents the feasibility of monitoring pH c of Swiss mouse 3T3 cells using31P NMR analysis of 2DGP. The results support the concept of a Na/H antiport operative in these cells, both in quiescence and after mitogenic stimulation. The data document by an independent technique that cytoplasmic alkalinization is an early event in mitogenesis, and that full activity of the Embden-Meyerhof pathway is not required for the expression of this event.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号