首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22503篇
  免费   3369篇
  国内免费   2689篇
  2024年   95篇
  2023年   678篇
  2022年   553篇
  2021年   867篇
  2020年   1204篇
  2019年   1275篇
  2018年   1064篇
  2017年   1213篇
  2016年   1223篇
  2015年   1174篇
  2014年   1271篇
  2013年   1475篇
  2012年   1135篇
  2011年   1032篇
  2010年   982篇
  2009年   1327篇
  2008年   1274篇
  2007年   1294篇
  2006年   1061篇
  2005年   1024篇
  2004年   867篇
  2003年   736篇
  2002年   655篇
  2001年   630篇
  2000年   620篇
  1999年   486篇
  1998年   439篇
  1997年   372篇
  1996年   317篇
  1995年   315篇
  1994年   255篇
  1993年   196篇
  1992年   194篇
  1991年   186篇
  1990年   128篇
  1989年   111篇
  1988年   91篇
  1987年   91篇
  1986年   83篇
  1985年   85篇
  1984年   73篇
  1983年   48篇
  1982年   82篇
  1981年   50篇
  1980年   64篇
  1979年   51篇
  1978年   21篇
  1977年   21篇
  1976年   18篇
  1975年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
142.
Horizontal distribution of the dinoflagellateCeratium hirundinella (O. F. Müller) Bergh in the Ishitegawa Reservoir, Ehime Prefecture, Japan, was investigated. Water quality was also surveyed. It was observed that the population ofC. hirundinella exponentially decreased in number from the head of the reservoir to the dam site. Further investigation proved thatC. hirundinella initiated growth at the head of the reservoir, and later gradually expanded downstream. It was found during the period of increase in water temperature that the cell density ofC. hirundinella at the uppermost station exponentially increased.  相似文献   
143.
Four thousand eight hundred years ago hemlock (Tsuga canadensis) populations were decimated throughout eastern North America. We have studied the effects of this loss from the terrestrial community on three Southern Ontario lakes: Little Round Lake, Sunfish Lake, and McKay Lake. This study includes the use of cladocerans, diatoms, chrysophytes, and bacterial pigments to assess the limnologic changes that occurred in these lakes. Each lake experienced a change in trophic status that coincided with the loss of hemlock from its catchment, but the change in the aquatic biota was different in each lake. The lakes' size may have been the most influential factor governing the response to this terrestrial disturbance.  相似文献   
144.
145.
The seasonality of phytoplankton in African lakes   总被引:4,自引:4,他引:0  
J. F. Talling 《Hydrobiologia》1986,138(1):139-160
Although some study of the subject began in 1899, wide-ranging information from African water-bodies has only become available since 1950. Important developments included the establishment of long-term centres of research, the adoption of improved methods for quantitative algal sampling, the more intensive study of environmental conditions, the beginnings of experimental testing, and the improvement of taxonomic knowledge.At higher latitudes (> 20 °) examples of pronounced algal seasonality are long-established; they are accompanied and influenced by marked changes in radiant energy income and so water temperature, and often by effects of seasonal water input. Illustrations are given from lakes in Morocco and South Africa.More generally in Africa, including the tropical belt, annual patterns of phytoplankton seasonality are usually either dominated by hydrological features (water input-output) or by hydrographic ones (water-column structure and circulation). Examples of both types are discussed, together with instances (e.g. L. Volta) of combined hydrological and hydrographic regulation. In both the seasonal abundance of diatoms is often distinct and complementary to that of blue-green algae, with differing relationships to vertical mixing and water retention.Horizontal variability in the seasonal cycle is especially pronounced in the larger or morphometrically subdivided lakes. Some inshore-offshore differentiation is also known to affect phytoplankton quantity (e.g. L. George) and species composition (e.g. L. Victoria). Longitudinal differentiation is common in elongate basins especially when with a massive or seasonal inflow at one end (e.g. L. Turkana, L. Nubia, L. Volta); occasional terminal upwelling can also be influential (e.g. southern L. Tanganyika). Such examples grade into the longitudinally differentiated seasonality of flowing river-reservoir systems, as studied on the Blue and White Niles.The annual amplitude of population density, expressed in orders of magnitude (=log10 units), is one measure of seasonal variability. It can exceed 3 orders both in systems subject to hydrological wash-out (e.g. Nile reservoirs) and in the more variable species components of lakes of long retention (e.g. L. Victoria). Low amplitudes can be characteristic of some components (e.g. green algae in L. Victoria) or of total algal biomass (e.g. L. George, L. Sibaya).Seasonal changes may be subordinated to inter-annual ones, especially in shallow and hydrologically unstable lakes (e.g. L. Nakuru).  相似文献   
146.
Effects of several population densities ofMeloidogyne incognita on the sweet potato cultivars Centennial (susceptible) and Jasper (moderately resistant) were studied. Field plots were infested with initial levels (Pi) of 0, 10, 100, 1,000, 5,000, and 10,000 eggs and juveniles/500 cm³ soil in 1980 and 0, 100, 1,000, 2,000, 3,000, 4,000, and 5,000 in 1981. M. incognita population development trends were similar on both cultivars; however, at high Pi, more eggs and juveniles were recovered from Centennial than from Jasper. The highest Pi did not result in the highest mid-season (Pm) counts. Pi was negatively correlated with the number of marketable roots and root weight but positively correlated with total cracked roots, percentage of cracked roots, and cracking severity. Jasper tolerated higher Pi with greater yields and better root quality than Centennial. Cracking of fleshy roots occurred with both cultivars at low Pi.  相似文献   
147.
Current methods for estimating past climatic patterns from pollen data require that the vegetation be in dynamic equilibrium with the climate. Because climate varies continuously on all time scales, judgement about equilibrium conditions must be made separately for each frequency band (i.e. time scale) of climatic change. For equilibrium conditions to exist between vegetation and climatic changes at a particular time scale, the climatic response time of the vegetation must be small compared to the time scale of climatic variation to which it is responding. The time required for vegetation to respond completely to climatic forcing at a time scale of 104 yr is still unknown, but records of the vegetational response to climatic events of 500-to 1000-yr duration provide evidence for relatively short response times. Independent estimates for the possible patterns and timing of late-Quaternary climate changes suggest that much of the vegetational evidence previously interpreted as resulting from disequilibrium conditions can instead be interpreted as resulting from the individualistic response of plant taxa to the different regional patterns of temperature and precipitation change. The differences among taxa in their response to climate can lead a) to rates and direction of plant-population movements that differ among taxa and b) to fossil assemblages that differ from any modern assemblage. An example of late-Holocene vegetational change in southern Quebec illustrates how separate changes in summer and winter climates may explain the simultaneous expansion of spruce (Picea) populations southward and beech (Fagus) populations northward.  相似文献   
148.
Vegetation responses to climatic change can be studied retrospectively by utilizing the Quaternary fossil record. There has been controversy over the extent to which major changes in vegetation patterns at the continental scale lag behind the climatic changes that drive them, and to what extent vegetation can ever be said to be in equilibrium with climate. The equilibrium question has no single answer. The predominant mode of vegetation response to climatic change depends on the space and time frame and resolution of the data set in which the response is observed.Vegetation (as observed on particular space and time scales) can be in dynamic equilibrium with climate if its response time is sufficiently fast in relation to the rate of climatic change to which it is observed to be responding. Several processes can be involved in the response: successional, migrational, edaphic, and evolutionary. Successional response times can be deduced from forest succession models. The other processes are less well understood and different ideas exist concerning their rates. According to one hypothesis, migrational lags caused delays of thousands of years in the postglacial dynamics of forest composition. The alternative hypothesis explains these changes as dynamic equilibrium responses to changes in climatic seasonality and climatic anomaly patterns. Neither hypothesis need be universally true; gradient analysis and forest succession models are among the techniques that can be used in inferential tests of these hypotheses for particular space-time regions.Dynamic equilibrium may often be a reasonable approximation for the responses of the broadest continental-scale forest patterns to orbitally induced climatic changes. But as spatial and temporal frames of observation are diminished and resolution increased, biotic processes must eventually come to dominate. At sufficiently fine scales the main observable phenomena are successional responses to natural disturbance events. The late-Quaternary record of vegetation change allows a choice of observation scales and thus provides a continuum of possibilities for study, ranging from long-term dynamic bioclimatology to more conventional vegetation dynamics.I thank Margaret Davis, Honor Prentice, Jim Ritchie, Al Solomon, Geoff Spaulding and Tom Webb for their reviews of earlier drafts. Research supported by a US Department of Energy, Carbon Dioxide Research Division, grant to Brown University and a Swedish Natural Science Research Council grant to the project SlsSimulation of Natural Forest Dynamics.I thank Margaret Davis, Honor Prentice, Jim Ritchie, Al Solomon, Geoff Spaulding and Tom Webb for their reviews of earlier drafts. Research supported by a US Department of Energy, Carbon Dioxide Research Division, grant to Brown University and a Swedish Natural Science Research Council grant to the project SlsSimulation of Natural Forest Dynamics.  相似文献   
149.
150.
Host-parasite relationships of Pratylenchus zeae and Quinisulcius acutus, alone or in combination, were studied on sorghum in the greenhouse and laboratory. Q. acutus at 1,000 or 5,000 nematodes per 15-cm-d pot and P. zeae at 500 nematodes per pot significantly suppressed plant height and fresh and oven dry shoot and root weights. A mixture of 1,000 Q. acutus and 500 P. zeae per pot resulted in greatest suppression of growth. Roots of plants inoculated with Q. acutus alone were reduced in number and size and showed lesions and discoloration. Reproduction of this nematode 42 days after inoculation was much greater in treatments of 100 or 1,000 than 5,000 nematodes. The population density of the two species at 6 weeks after inoculation was significantly less when combined than for each species alone. When the two species were combined, reproduction of P. zeae was greater than that of Q. acutus, but the final populations per gram of root weight were the same. Q. acutus fed ectoparasitically on epidermal cells of sorghum roots in the zone of elongation and differentiation when observed under in vitro conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号