首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1452篇
  免费   164篇
  国内免费   147篇
  1763篇
  2023年   35篇
  2022年   29篇
  2021年   44篇
  2020年   67篇
  2019年   64篇
  2018年   60篇
  2017年   57篇
  2016年   67篇
  2015年   62篇
  2014年   60篇
  2013年   66篇
  2012年   52篇
  2011年   71篇
  2010年   62篇
  2009年   91篇
  2008年   96篇
  2007年   88篇
  2006年   77篇
  2005年   69篇
  2004年   67篇
  2003年   59篇
  2002年   50篇
  2001年   48篇
  2000年   45篇
  1999年   35篇
  1998年   28篇
  1997年   19篇
  1996年   26篇
  1995年   21篇
  1994年   15篇
  1993年   15篇
  1992年   8篇
  1991年   12篇
  1990年   16篇
  1989年   7篇
  1988年   6篇
  1987年   8篇
  1986年   5篇
  1985年   6篇
  1984年   12篇
  1983年   4篇
  1982年   4篇
  1981年   7篇
  1980年   6篇
  1977年   5篇
  1975年   3篇
  1973年   2篇
  1972年   1篇
  1958年   1篇
  1950年   1篇
排序方式: 共有1763条查询结果,搜索用时 10 毫秒
121.
CO2 fluxes from wood decomposition represent an important source of carbon from forest ecosystems to the atmosphere, which are determined by both wood traits and climate influencing the metabolic rates of decomposers. Previous studies have quantified the effects of moisture and temperature on wood decomposition, but these effects were not separated from the potential influence of wood traits. Indeed, it is not well understood how traits and climate interact to influence wood CO2 fluxes. Here, we examined the responses of CO2 fluxes from dead wood with different traits (angiosperm and gymnosperm) to 0%, 35%, and 70% rainfall reduction across seasonal temperature gradients. Our results showed that drought significantly decreased wood CO2 fluxes, but its effects varied with both taxonomical group and drought intensity. Drought‐induced reduction in wood CO2 fluxes was larger in angiosperms than gymnosperms for the 35% rainfall reduction treatment, but there was no significant difference between these groups for the 70% reduction treatment. This is because wood nitrogen density and carbon quality were significantly higher in angiosperms than gymnosperms, yielding a higher moisture sensitivity of wood decomposition. These findings were demonstrated by a significant positive interaction effect between wood nitrogen and moisture on CO2 fluxes in a structural equation model. Additionally, we ascertained that a constant temperature sensitivity of CO2 fluxes was independent of wood traits and consistent with previous estimates for extracellular enzyme kinetics. Our results highlight the key role of wood traits in regulating drought responses of wood carbon fluxes. Given that both climate and forest management might extensively modify taxonomic compositions in the future, it is critical for carbon cycle models to account for such interactions between wood traits and climate in driving dynamics of wood decomposition.  相似文献   
122.
杨,榆混交型林带生长调解试验研究   总被引:1,自引:0,他引:1  
我国三北地区大面积农田防护林网主要为杨树林网,树种单一,容易造成病虫害蔓延。但由多树种组成的混交林网由于树种生长速度不同,造成树木群体生长参差不齐,而导致某些树木受压抑而不能正常生长甚至死亡,从而降低了林带的防护效益。为改变这一现状并建立起一整套混交...  相似文献   
123.
利用cDNA芯片技术从含有2,952个克隆的杨树芯片中筛选出1,160个受杨盘二孢菌诱导的基因。功能分析表明,该1,160个基因分别属于11个功能类别,除了功能未知基因外,参与新陈代谢、防御反应、信号传导及转录调控的基因最多,这4大类基因约占基因总数的42%。1,160个差异表达基因中有926个基因被定位于19条染色体上,其中被定位于第Ⅱ条染色体上的差异基因最多,共102个(11.0%),其次是第Ⅰ条染色体,共93个(10%),被定位到第ⅩⅦ条染色体上的差异基因最少,仅有11个,基因在染色体上的分布则表现为在部分染色体的末端区域存在大量的聚集,在中间区段则相对较少和排列稀疏,基因的这种分布情况与植物抗病的关系有待进一步研究。  相似文献   
124.
Hybridization between species is known to greatly affect their genetic diversity and, therefore, their evolution. Also, within species, there may be genetic clusters between which gene flow is limited, which may impact natural selection. However, few studies have looked simultaneously at the influence of among‐species and within‐species gene flow. Here, we study the influence of hybridization between Populus balsamifera and Populus trichocarpa on population structure and adaptation in P. balsamifera. We did this by sampling a total of 1517 individuals from across the ranges of these two species, and by genotyping them using a combination of 93 nuclear and 17 cpDNA SNPs. We found that hybridization is mostly limited to the contact zone where the species’ distributions overlap. Within P. balsamifera, we found multiple levels of population structure. Interestingly, the border between the Eastern and Central clusters is very sharp, whereas the border between the Central and Western clusters is diffuse. Outlier analysis revealed that three loci associated with the sharp border were also associated with climate. We hypothesize that the observed clusters derive from three refugia during the Pleistocene ice ages. Between the Central and Western clusters, post‐glacial long‐distance gene flow has led to the diffusion of their border. In the Eastern cluster, we hypothesize that endogenous genomic barriers have developed, leading to the sharp border and a spurious climate association. We conclude that the large‐scale genetic structure of P. balsamifera is mostly shaped by historical factors and the influence of interspecific hybridization is limited.  相似文献   
125.
126.
We elucidated the extracellular ATP (eATP) signalling cascade active in programmed cell death (PCD) using cell cultures of Populus euphratica. Millimolar amounts of eATP induced a dose‐ and time‐dependent reduction in viability, and the agonist‐treated cells displayed hallmark features of PCD. eATP caused an elevation of cytosolic Ca2+ levels, resulting in Ca2+ uptake by the mitochondria and subsequent H2O2 accumulation. P. euphratica exhibited an increased mitochondrial transmembrane potential, and cytochrome c was released without opening of the permeability transition pore over the period of ATP stimulation. Moreover, the eATP‐induced increase of intracellular ATP, essential for the activation of caspase‐like proteases and subsequent PCD, was found to be related to increased mitochondrial transmembrane potential. NO is implicated as a downstream component of the cytosolic Ca2+ concentration but plays a negligible role in eATP‐stimulated cell death. We speculate that ATP binds purinoceptors in the plasma membrane, leading to the induction of downstream intermediate signals, as the proposed sequence of events in PCD signalling was terminated by the animal P2 receptor antagonist suramin.  相似文献   
127.
Woody debris is abundant in hurricane‐impacted forests. With a major hurricane affecting South Florida mangroves approximately every 20 yr, carbon storage and nutrient retention may be influenced greatly by woody debris dynamics. In addition, woody debris can influence seedling regeneration in mangrove swamps by trapping propagules and enhancing seedling growth potential. Here, we report on line‐intercept woody debris surveys conducted in mangrove wetlands of South Florida 9–10 yr after the passage of Hurricane Andrew. The total volume of woody debris for all sites combined was estimated at 67 m3/ha and varied from 13 to 181 m3/ha depending upon differences in forest height, proximity to the storm, and maximum estimated wind velocities. Large volumes of woody debris were found in the eyewall region of the hurricane, with a volume of 132 m3/ha and a projected woody debris biomass of approximately 36 t/ha. Approximately half of the woody debris biomass averaged across all sites was associated as small twigs and branches (fine woody debris), since coarse woody debris >7.5 cm felled during Hurricane Andrew was fairly well decomposed. Much of the small debris is likely to be associated with post‐hurricane forest dynamics. Hurricanes are responsible for large amounts of damage to mangrove ecosystems, and components of associated downed wood may provide a relative index of disturbance for mangrove forests. Here, we suggest that a fine:coarse woody debris ratio ≤0.5 is suggestive of a recent disturbance in mangrove wetlands, although additional research is needed to corroborate such findings.  相似文献   
128.

Background and Aims

Resin ducts (RDs) are features present in most conifer species as defence structures against pests and pathogens; however, little is known about RD expression in trees following fire injury. This study investigates changes in RD size and density in fire scars of Douglas fir (Pseudotsuga menziesii) and western larch (Larix occidentalis) as a means to evaluate the ecophysiological significance of traumatic resinosis for tree defence and survival.

Methods

Transverse and tangential microsections were prepared for light microscopy and image analysis in order to analyse axial and radial RDs, respectively. Epithelial cells of RDs and fusiform rays associated with radial RDs were also examined. RDs were compared between normal xylem and wound xylem at four different section heights along the fire-injured stem.

Key Results

Following fire injury, P. menziesii axial RDs narrowed by 38–43 % in the first year after injury, and the magnitude of this change increased with stem height. Larix occidentalis axial RDs widened by 46–50 % in the second year after injury. Radial RDs were of equivalent size in P. menziesii, but widened by 162–214 % in L. occidentalis. Fusiform rays were larger following fire injury, by 4–14 % in P. menziesii and by 23–38 % in L. occidentalis. Furthermore, axial RD density increased in both species due to the formation of tangential rows of traumatic RDs, especially in the first and second years after injury. However, radial RD density did not change significantly.

Conclusions

These results highlight traumatic resinosis as a species-specific response. Pseudotsuga menziesii produce RDs of equivalent or reduced size, whereas L. occidentalis produce wider RDs in both the axial and radial duct system, thereby increasing resin biosynthesis and accumulation within the whole tree. Larix occidentalis thus appears to allocate more energy to defence than P. menziesii.  相似文献   
129.
130.
Mediterranean shrub species are described as having phenology, habitus , reproductive biology and anatomical alterations in certain tissues, allowing their survival during the dry season and protecting them from herbivory. Anatomical and chemical analyses were conducted in 1-year-old branches of Cistus ladanifer L. in order to investigate the role played by shoot structure in the adaptive strategies of this species in the Mediterranean environment. Results showed that both xylem and pith underwent lignification. Pith parenchyma cells had thickened walls, higher lignin content than xylem and different monomer composition. Xylem presented features aiding safe water transport. A large accumulation of phenolic substances was found in xylem, pith and cortical parenchyma. Observations reported in this paper suggest the occurrence of adaptive strategies in 1-year-old branches of C. ladanifer whose structural features: (1) allow mechanical reinforcement of tissues to withstand drought without suffering permanent damage; (2) favour safety rather than efficiency in water transport; (3) defend the plants from animal predation and pathogens by accumulating phenolics in various tissues, and (4) protect inner tissues against UV-B radiation through deposition of phenolic compounds in cortical layers.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society, 2007, 155 , 361–371.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号