首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   405篇
  免费   55篇
  国内免费   90篇
  2023年   7篇
  2022年   4篇
  2021年   7篇
  2020年   20篇
  2019年   23篇
  2018年   17篇
  2017年   18篇
  2016年   26篇
  2015年   22篇
  2014年   20篇
  2013年   19篇
  2012年   21篇
  2011年   18篇
  2010年   20篇
  2009年   42篇
  2008年   22篇
  2007年   29篇
  2006年   27篇
  2005年   25篇
  2004年   21篇
  2003年   17篇
  2002年   11篇
  2001年   12篇
  2000年   12篇
  1999年   15篇
  1998年   10篇
  1997年   9篇
  1996年   5篇
  1995年   6篇
  1994年   6篇
  1993年   5篇
  1992年   4篇
  1991年   7篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1976年   1篇
  1975年   1篇
  1958年   1篇
排序方式: 共有550条查询结果,搜索用时 562 毫秒
41.
Yang M S  Mi D  D. Ewal  Wang Y  Liang H Y  Zhen Z X 《农业工程》2006,26(11):3555-3561
Two partly modified insect-resistant genes (BtCryI Ac gene [Bt gene toxin against Lepidopterean insects] and API gene [arrowhead proteinase inhibitor]) were transferred to the triploid hybrid of Chinese white poplar ((Populus tomentosa Carr. × Populus bolleana Louche) × Populus tomentosa Carr.) mediated by A. tumefaciens. The survival of Agrobacterium in transgenic plants was examined during the processes of transplanting and subculturing on the nutrient medium. The results suggested that 80% of the plants, which were obtained by repeated selection on media added with 50 mg/L kanamycin and 300 mg/l carbenicillin, showed positive reactions after examination using molecular methods. The ELISA test indicated that the Bt toxoprotein was expressed in seven of the transgenic sub-clones. Leaves, stems, and roots of all the 28 transgenic plants were cultured on the YEB medium added with 50 mg/L kanamycin, and it was found that Agrobacterium survived in three sub-clones (33, 37, 5) and could have existed for 24 months in the bottle. These three transgenic sub-clones were transplanted and cultivated for one month in the room, and then the target Agrobacterium was found in rhizosphere of the sub-clone 33.  相似文献   
42.
The uptake and fate of 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by hybrid poplars in hydroponic systems were compared and exposed leaves were leached with water to simulate potential exposure pathways from groundwater in the field. TNT was removed from solution more quickly than nitramine explosives. Most of radioactivity remained in root tissues for 14C-TNT, but in leaves for 14C-RDX and 14C-HMX. Radiolabel recovery for TNT and HMX was over 94%, but that of RDX decreased over time, suggesting a loss of volatile products. A considerable fraction (45.5%) of radioactivity taken up by whole plants exposed to 14C-HMX was released into deionized water, mostly as parent compound after 5 d of leaching. About a quarter (24.0%) and 1.2% were leached for RDX and TNT, respectively, mostly as transformed products. Leached radioactivity from roots was insignificant in all cases (< 2%). This is the first report in which small amounts of transformation products of RDX leach from dried leaves following uptake by poplars. Such behavior for HMX was reported earlier and is reconfirmed here. All three compounds differ substantially in their fate and transport during the leaching process.  相似文献   
43.
We elucidated the extracellular ATP (eATP) signalling cascade active in programmed cell death (PCD) using cell cultures of Populus euphratica. Millimolar amounts of eATP induced a dose‐ and time‐dependent reduction in viability, and the agonist‐treated cells displayed hallmark features of PCD. eATP caused an elevation of cytosolic Ca2+ levels, resulting in Ca2+ uptake by the mitochondria and subsequent H2O2 accumulation. P. euphratica exhibited an increased mitochondrial transmembrane potential, and cytochrome c was released without opening of the permeability transition pore over the period of ATP stimulation. Moreover, the eATP‐induced increase of intracellular ATP, essential for the activation of caspase‐like proteases and subsequent PCD, was found to be related to increased mitochondrial transmembrane potential. NO is implicated as a downstream component of the cytosolic Ca2+ concentration but plays a negligible role in eATP‐stimulated cell death. We speculate that ATP binds purinoceptors in the plasma membrane, leading to the induction of downstream intermediate signals, as the proposed sequence of events in PCD signalling was terminated by the animal P2 receptor antagonist suramin.  相似文献   
44.
The demand for wood from short rotation coppice (SRC) plantations as a renewable energy source is currently increasing and could affect biodiversity in agricultural areas. The objective was to evaluate the contribution of SRC plantations to phytodiversity in agricultural landscapes assessed as species richness, species–area relationships, Shannon indices, detrended correspondence analysis on species composition, Sørensen similarities, habitat preference proportions, and species proportions found in only one land use. Vegetation surveys were conducted on 12 willow (Salix spp.) and three poplar (Populus spp.) coppice sites as well as on surrounding arable lands, grasslands and forests in central Sweden and northern Germany. SRC plantations were richer in plant species (mean: 30 species per 100 m²) than arable land (10), coniferous forests (13) and mixed forests in Germany (12). Comparing SRC plantations with other land uses, we found lowest similarities in species composition with arable lands, coniferous forests and German mixed forests and highest similarities with marginal grassland strips, grasslands and Swedish mixed forests. Similarity depended on the SRC tree cover: at increased tree cover, SRC plantations became less similar to grasslands but more similar to forests. The SRC plantations were composed of a mixture of grassland (33%), ruderal (24%) and woodland (15%) species. Species abundance in SRC plantations was more heterogeneous than in arable lands. We conclude that SRC plantations form novel habitats leading to different plant species composition compared to conventional land uses. Their landscape‐scale value for phytodiversity changes depending on harvest cycles and over time. As a structural landscape element, SRC plantations contribute positively to phytodiversity in rural areas, especially in land use mosaics where these plantations are admixed to other land uses with dissimilar plant species composition such as arable land, coniferous forest and, at the German sites, also mixed forest.  相似文献   
45.
Rising temperatures are predicted to cause temperate tree species to expand north into currently boreal dominated forests. Other factors, such as overabundant deer, may hinder temperate expansion. We examined how interactions among temperature, browse pressure, light availability, and initial size impact height and radial growth of naturally regenerated, competing temperate and boreal saplings across their overlapping range limits in central North America. In 9 of 10 growth model comparisons, the inclusion of mean summer temperature and browse damage as explanatory variables strongly improved model performance over the base model with only initial size and light availability as parameters. Potential growth reductions due to browse damage and temperature limitation were similar in magnitude (up to ~50%). Temperate sapling growth increased and boreal growth decreased with temperature across a regional summer temperature gradient (2.3 °C), causing a rank reversal in growth rates, and suggesting that temperature is a key driver of sapling performance and range boundaries. However, under high browse pressure positive temperate responses to temperature were eliminated, essentially pushing the crossover point in growth between temperate and boreal species further south. These results highlight the importance of interactions among global change agents and potential impediments for tree species to track a rapidly changing climate.  相似文献   
46.
重度盐碱地营造杨树人工林土壤改良效果   总被引:3,自引:1,他引:2  
为探讨重度盐碱地营造杨树人工林对土壤的改良效果,本实验以黑龙江省肇东市重度盐碱地作为研究对象,采用小穴改良"一字沟"觅食丘式原位修复、小穴改良"十字沟"觅食台式原位修复和小穴改良"井字沟"觅食坛式原位修复的方法对重度盐碱地进行改良。研究结果表明:实施不同改良措施后土壤特性发生了显著变化,土壤pH值、电导率含量显著下降;土壤碳酸根含量显著下降,交换性钙、镁含量显著提高;土壤胡敏酸和壳聚糖含量明显提高,土壤肥力增加。因此,本研究所采用的三种不同的改良措施具有良好的改良效果。  相似文献   
47.
Black spot disease in poplar is a disease of the leaf caused by fungus. The major pathogen is Marssonina brunnea f. sp. multigermtubi. To date, little is known about the molecular mechanism of poplar (M. brunnea) interaction. In order to identify the proteins related to disease resistance and understand its molecular basis, the clone "NL895" (P. euramericana CL"NL895"), which is highly resistant to M. brunnea f. sp. multigermtubi, was used in this study. We used two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) to identify the proteins in poplar leaves that were differentially expressed in response to black spot disease pathogen, M. brunnea f. sp. multigermtubi. Proteins extracted from poplar leaves at 0, 12, 24, 48, and 72 h after pathogen-inoculation were separated by 2-DE, About 500 reproducible protein spots were detected, of which 40 protein spots displayed differential expression in levels and were subjected to Matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) followed by database searching. According to the function, the identified proteins were sorted into five categories, that is, protein synthesis, metabolism, defense response and unclassified proteins.  相似文献   
48.
49.
Electron microscopic observation revealed that poplar (Populus deltoides Marsh.) and winterwheat ( Triticum aestivum L. cv. Seward 80004) plasmodesmatal structures significantly changed undershort day (SD, 8 h light) and in winter period, and such changes differed also noticeably between these twowoody and herbaceous plants. Under long day (LD, 16 h light), many plasmodesmata with strong stainappeared in the cell wall of both poplar apical buds and winter wheat young leaf tissues, and connections ofcytoplasmic endoplasmic reticulum (ER) with the ER in some plasmodesmata were observed. In addition,the typical “neck type” plasmodesmata were observed in winter wheat young leaf tissues, and their centraldesmotubules (appressed-ER) could be clearly identified. Under SD, many poplar plasmodesmata showedonly a partial structure in the cell wall and appeared to be discontinued; some plasmodesmata swelled in themid-wall, forming the cavity, and no appressed-ER appeared, in winter wheat, however, no noticeablealterations of plasmodesmata occurred, and the plasmodesmatal structure essentially remained the sameas it was under LD. In winter period, poplar plasmodesmata had a similar morphology as those observedunder SD, however, winter wheat manifested at least two types of significant plasmodesmatal alterations:one plugged by electron-dense materials and the other of reduced neck region compared to those underLD. The above dynamic difference of the two species plasmodesmata under SD and winter period revealedthe difference of their dormancy development under those environmental conditions.  相似文献   
50.
Over‐expression of glutamine synthetase (GS, EC 6.3.1.2), a key enzyme in nitrogen assimilation, may be a reasonable approach to enhance plant nitrogen use efficiency. In this work phenotypic and biochemical characterizations of young transgenic poplars showing ectopic expression of a pine cytosolic GS transgene in photosynthetic tissue (Gallardo et al., Planta 210, 19–26, 1999) are presented. Analysis of 22 independent transgenic lines in a 6 month greenhouse study indicated that expression of the pine GS transgene affects early vegetative growth and leaf morphology. In comparison with non‐transgenic controls, transgenic trees exhibited significantly greater numbers of nodes and leaves (12%), and higher average leaf length and width resulting in an increase in leaf area (25%). Leaf shape was not altered. Transgenic poplars also exhibited increased GS activity (66%), chlorophyll content (33%) and protein content (21%). Plant height was correlated with GS content in young leaves, suggesting that GS can be considered a marker for vegetative growth. Molecular and kinetic characterization of GS isoforms in leaves indicated that poplar GS isoforms are similar to their counterparts in herbaceous plants. A new GS isoenzyme that displayed molecular and kinetic characteristics corresponding to the octomeric pine cytosolic GS1 was identified in the photosynthetic tissues of transgenic poplar leaves. These results indicate that enhanced growth and alterations in biochemistry during early growth are the consequence of transgene expression and assembly of pine GS1 subunits into a new functional holoenzyme in the cytosol of photosynthetic cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号