首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   629篇
  免费   33篇
  国内免费   13篇
  2024年   1篇
  2023年   9篇
  2022年   12篇
  2021年   9篇
  2020年   20篇
  2019年   20篇
  2018年   33篇
  2017年   17篇
  2016年   19篇
  2015年   27篇
  2014年   57篇
  2013年   60篇
  2012年   31篇
  2011年   50篇
  2010年   31篇
  2009年   28篇
  2008年   21篇
  2007年   28篇
  2006年   28篇
  2005年   32篇
  2004年   18篇
  2003年   16篇
  2002年   18篇
  2001年   11篇
  2000年   8篇
  1999年   4篇
  1998年   10篇
  1997年   4篇
  1996年   6篇
  1995年   6篇
  1994年   1篇
  1993年   3篇
  1992年   8篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1983年   6篇
  1982年   1篇
  1980年   2篇
  1977年   1篇
  1975年   1篇
排序方式: 共有675条查询结果,搜索用时 140 毫秒
671.
672.
In recent decades, much conceptual thinking in trophic ecology has been guided by theories of nutrient limitation and the flow of elements, such as carbon and nitrogen, within and among ecosystems. More recently, ecologists have also turned their attention to examining the value of specific dietary nutrients, in particular polyunsaturated fatty acids (PUFA), among which the omega-3 PUFA, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) play a central role as essential components of neuronal cell membranes in many organisms. This review focuses on a new neuro-ecological approach stemming from the biochemical (mechanistic) and physiological (functional) role of DHA in neuronal cell membranes, in particular in conjunction with G-protein coupled receptors (GPCRs). We link the co-evolution of these neurological functions to metabolic dependency on dietary omega-3 PUFA. We outline ways in which deficiencies in dietary DHA supply may affect, cognition, vision, and behaviour, and ultimately, the biological fitness of consumers. We then review emerging evidence that changes in access to dietary omega-3 PUFA may ultimately have profound impacts on trophic interactions leading to potential changes in community structure and ecosystem functioning that, in turn, may affect the supply of DHA within and across ecosystems, including the supply for human consumption.  相似文献   
673.
The aim of this study was to model the production of fats, enriched with ω-3 polyunsaturated fatty acids (ω-3 PUFA) for nutraceutical purposes, via the response surface methodology. These fats were obtained by transesterification of palm oil stearin (POS) with a concentrate (EPAX 2050TG) of triglycerides enriched with ω-3 PUFA and soybean oil, catalysed by a commercial immobilized Candida antarctica lipase (“Novozym 435”).

The initial water activity (aw) of the biocatalyst, POS and EPAX 2050TG concentrations, time and temperature showed a significant effect on the transesterification reaction, as well as on the competing reactions of hydrolysis and lipid oxidation.

Depending on the factors included, the transesterification reaction was described either by first- or second-order models.

The production of free fatty acids, which is ascribed both to the hydrolytic reaction and the mechanism of lipase-catalysed transesterification, showed a second-order dependence on the initial aw of the biocatalyst.  相似文献   

674.
Odontocetes have specialized mandibular fats, the extramandibular (EMFB) and intramandibular fat bodies (IMFB), which function as acoustic organs, receiving and channeling sound to the ear during hearing and echolocation. Recent strandings of beaked whales suggest that these fat bodies are susceptible to nitrogen (N2) gas embolism and empirical evidence has shown that the N2 solubility of these fat bodies is higher than that of blubber. Since N2 gas will diffuse from blood into tissue at any blood/tissue interface and potentially form gas bubbles upon decompression, it is imperative to understand the extent of microvascularity in these specialized acoustic fats so that risk of embolism formation when diving can be estimated. Microvascular density was determined in the EMFB, IMFB, and blubber from 11 species representing three odontocete families. In all cases, the acoustic tissues had less (typically 1/3 to 1/2) microvasculature than did blubber, suggesting that capillary density in the acoustic tissues may be more constrained than in the blubber. However, even within these constraints there were clear phylogenetic differences. Ziphiid (Mesoplodon and Ziphius, 0.9 ± 0.4% and 0.7 ± 0.3% for EMFB and IMFB, respectively) and Kogiid families (1.2 ± 0.2% and 1.0 ± 0.01% for EMFB and IMFB, respectively) had significantly lower mean microvascular densities in the acoustic fats compared to the Delphinid species (Tursiops, Grampus, Stenella, and Globicephala, 1.3 ± 0.3% and 1.3 ± 0.3% for EMFB and IMFB, respectively). Overall, deep‐diving beaked whales had less microvascularity in both mandibular fats and blubber compared to the shallow‐diving Delphinids, which might suggest that there are differences in the N2 dynamics associated with diving regime, phylogeny, and tissue type. These novel data should be incorporated into diving physiology models to further understand potential functional disruption of the acoustic tissues due to changes in normal diving behavior.  相似文献   
675.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号