首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   629篇
  免费   33篇
  国内免费   13篇
  2024年   1篇
  2023年   9篇
  2022年   12篇
  2021年   9篇
  2020年   20篇
  2019年   20篇
  2018年   33篇
  2017年   17篇
  2016年   19篇
  2015年   27篇
  2014年   57篇
  2013年   60篇
  2012年   31篇
  2011年   50篇
  2010年   31篇
  2009年   28篇
  2008年   21篇
  2007年   28篇
  2006年   28篇
  2005年   32篇
  2004年   18篇
  2003年   16篇
  2002年   18篇
  2001年   11篇
  2000年   8篇
  1999年   4篇
  1998年   10篇
  1997年   4篇
  1996年   6篇
  1995年   6篇
  1994年   1篇
  1993年   3篇
  1992年   8篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1983年   6篇
  1982年   1篇
  1980年   2篇
  1977年   1篇
  1975年   1篇
排序方式: 共有675条查询结果,搜索用时 31 毫秒
61.
Structural determination of polyunsaturated fatty acids by gas chromatography-mass spectrometry (GC-MS) requires currently the use of nitrogen containing derivatives such as picolinyl esters, 4,4-dimethyloxazoline or pyrrolidides derivatives. The derivatization is required in most cases to obtain low energy fragmentation that allows accurate location of the double bonds. In the present work, the following metabolites of rumelenic (cis-9,trans-11,cis-15 18:3) acid, from rat livers, were identified: cis-8,cis-11,trans-13,cis-17 20:4, cis-5,cis-8,cis-11,trans-13,cis-17 20:5, cis-7,cis-10,cis-13,trans-15,cis-19 22:5, and cis-4,cis-7,cis-10,cis-13,trans-15,cis-19 22:6 acids by GC-MS as their 4,4-dimethyloxazoline and methyl esters derivatives. Specific fragmentation of the methyl ester derivatives revealed some similarity with their corresponding DMOX derivatives. Indeed, intense ion fragments at m/z=M+-69, corresponding to a cleavage at the center of a bis-methylene interrupted double bond system were observed for all identified metabolites. Moreover, intense ion fragments at m/z=M+-136, corresponding to allylic cleavage of the n-12 double bonds were observed for the C20:5, C22:5, C22:6 acid metabolites. For the long chain polyunsaturated fatty acids from the rumelenic metabolism, we showed that single methyl esters derivatives might be used for both usual quantification by GC-FID and identification by GC-MS.  相似文献   
62.
We assessed the ability of endothelial lipase (EL) to hydrolyze the sn-1 and sn-2 fatty acids (FAs) from HDL phosphatidylcholine. For this purpose, reconstituted discoidal HDLs (rHDLs) that contained free cholesterol, apolipoprotein A-I, and either 1-palmitoyl-2-oleoylphosphatidylcholine, 1-palmitoyl-2-linoleoylphosphatidylcholine, or 1-palmitoyl-2-arachidonylphosphatidylcholine were incubated with EL- and control (LacZ)-conditioned media. Gas chromatography analysis of the reaction mixtures revealed that both the sn-1 (16:0) and sn-2 (18:1, 18:2, and 20:4) FAs were liberated by EL. The higher rate of sn-1 FA cleavage compared with sn-2 FA release generated corresponding sn-2 acyl lyso-species as determined by MS analysis. EL failed to release sn-2 FA from rHDLs containing 1-O-1'-hexadecenyl-2-arachidonoylphosphatidylcholine, whose sn-1 position contained a nonhydrolyzable alkyl ether linkage. The lack of phospholipase A(2) activity of EL and its ability to liberate [(14)C]FA from [(14)C]lysophosphatidylcholine (lyso-PC) led us to conclude that EL-mediated deacylation of phosphatidylcholine (PC) is initiated at the sn-1 position, followed by the release of the remaining FA from the lyso-PC intermediate. Thin-layer chromatography analysis of cellular lipids obtained from EL-overexpressing cells revealed a pronounced accumulation of [(14)C]phospholipid and [(14)C]triglyceride upon incubation with 1-palmitoyl-2-[1-(14)C]linoleoyl-PC-labeled HDL(3), indicating the ability of EL to supply cells with unsaturated FAs.  相似文献   
63.
Ultraviolet (UV) irradiation regulates UV-responsive genes, including matrix metalloproteinases (MMPs). Moreover, UV-induced MMPs cause connective tissue damage and the skin to become wrinkled and aged. Here, we investigated the effect of eicosapentaenoic acid (EPA), a dietary omega-3 fatty acid, on UV-induced MMP-1 expression in human dermal fibroblasts (HDFs). We found that UV radiation increases MMP-1 expression and that this is mediated by p44 and p42 MAP kinase (ERK) and Jun-N-terminal kinase (JNK) activation but not by p38 activation. Pretreatment of HDFs with EPA inhibited UV-induced MMP-1 expression in a dose-dependent manner and also inhibited the UV-induced activation of ERK and JNK by inhibiting ERK kinase (MEK1) and SAPK/ERK kinase 1 (SEK1) activation, respectively. Moreover, inhibition of ERK and JNK by EPA resulted in the decrease of c-Fos expression and c-Jun phosphorylation/expression induced by UV, respectively, which led to the inhibition of UV-induced activator protein-1 DNA binding activity. This inhibitory effect of EPA on MMP-1 was not mediated by an antioxidant effect. We also found that EPA inhibited 12-O-tetradecanoylphorbol-13-acetate- or tumor necrosis factor-alpha-induced MMP-1 expression in HDFs and UV-induced MMP-1 expression in HaCaT cells. In conclusion, our results demonstrate that EPA can inhibit UV-induced MMP-1 expression by inhibiting the MEK1/ERK/c-Fos and SEK1/JNK/c-Jun pathways. Therefore, EPA is a potential agent for the prevention and treatment of skin aging.  相似文献   
64.
65.
Yoshida S  Yoshida H 《Biopolymers》2004,74(5):403-412
The aim of this study was to develop a noninvasive method to observe polyunsaturated fatty acids (PUFAs) behavior in the human body using Fourier transform infrared spectroscopy. For the noninvasive measurement of human oral mucosa, we have used infrared spectroscopy with a suitable attachment for an in vivo attenuated total reflectance system. The fatty acid contents in the tissues were determined by gas-chromatography mass-spectrometry after methylation. The alkene C-H stretching vibrations of unsaturated fatty acids in dietary oils showed infrared absorption bands with various peak positions and intensities at around 3010 cm(-1) depending on the extent of unsaturation and their species. The diurnal fluctuation of the alkene peak position of oral mucosa suggested that the contents of PUFAs were increased gradually in the early afternoon, and these data were supported by the direct determination of fatty acid species in oral mucosa where the relative increase of arachidonic and docosahexaenoic acids was observed in the early afternoon. This diurnal change of alkene peak position resembled the pattern of a "lipid factor" change calculated with the factor analysis applied to the overall infrared spectrum. We could monitor the diurnal fluctuations of PUFA contents of human oral mucosa noninvasively using a reagent-free infrared analysis system. The measurement of alkene and methylene infrared bands may provide a useful tool for detecting changes in PUFA balance in the human body.  相似文献   
66.
The lipoxygenase (LOX) pathway was proposed to compete with hydrolysis and be partly responsible for the metabolism of polyunsaturated N-acylethanolamines (PU-NAEs). Treatment of Arabidopsis seedlings with lauroylethanolamide (NAE 12:0) resulted in elevated levels of PU-NAE species, and this was most pronounced in plants with reduced NAE hydrolase activity. Enzyme activity assays revealed that NAE 12:0 inhibited LOX-mediated oxidation of PU lipid substrates in a dose-dependent and competitive manner. NAE 12:0 was 10-20 times more potent an inhibitor of LOX activities than lauric acid (FFA 12:0). Furthermore, treatment of intact Arabidopsis seedlings with NAE 12:0 (but not FFA 12:0) substantially blocked the wound-induced formation of jasmonic acid (JA), suggesting that NAE 12:0 may be used in planta to manipulate oxylipin metabolism.  相似文献   
67.
Ida Coordt Elle 《FEBS letters》2010,584(11):2183-241
The nematode Caenorhabditis elegans (C. elegans) has during the last decade emerged as an invaluable eukaryotic model organism to understand the metabolic and neuro-endocrine regulation of lipid accumulation. The fundamental pathways of food intake, digestion, metabolism, and signalling are evolutionary conserved between mammals and worms making C. elegans a genetically and metabolically extremely tractable model to decipher new regulatory mechanisms of lipid storage and to understand how nutritional and genetic perturbations can lead to obesity and other metabolic diseases. Besides providing an overview of the most important regulatory mechanisms of lipid accumulation in C. elegans, we also critically assess the current methodologies to monitor lipid storage and content as various methods differ in their applicability, consistency, and simplicity.  相似文献   
68.
The ability of human postprandial triacylglycerol-rich lipoproteins (TRLs), isolated after meals enriched in saturated fatty acids (SFAs), n-6 PUFAs, and MUFAs, to inhibit the uptake of 125I-labeled LDL by the LDL receptor was investigated in HepG2 cells. Addition of TRLs resulted in a dose-dependent inhibition of heparin-releasable binding, cell-associated radioactivity, and degradation products of 125I-labeled LDL (P < 0.001). SFA-rich Svedberg flotation rate (Sf) 60-400 resulted in significantly greater inhibition of cell-associated radioactivity than PUFA-rich particles (P = 0.016) and total uptake of 125I-labeled LDL compared with PUFA- and MUFA-rich particles (P < 0.02). Normalization of the apolipoprotein (apo)E but not apoC-III content of the TRLs removed the effect of meal fatty acid composition, and addition of an anti-apoE antibody reversed the inhibitory effect of TRLs on the total uptake of 125I-labeled LDL. Real time RT-PCR showed that the SFA-rich Sf 60-400 increased the expression of genes involved in hepatic lipid synthesis (P < 0.05) and decreased the expression of the LDL receptor-related protein 1 compared with MUFAs (P = 0.008). In conclusion, these findings suggest an alternative or additional mechanism whereby acute fat ingestion can influence LDL clearance via competitive apoE-dependent effects of TRL on the LDL receptor.  相似文献   
69.
Most lipid emulsions for parenteral feeding of premature infants are based on long-chain triacylglycerols (LCTs), but inclusion of medium-chain triacylglycerols (MCTs) might provide a more readily oxidizable energy source. The influence of these emulsions on fatty acid composition and metabolism was studied in 12 premature neonates, who were randomly assigned to an LCT emulsion (control) or an emulsion with a mixture of MCT and LCT (1:1). On study day 7, all infants received [13C]linoleic (LA) and [13C]alpha-linolenic acid (ALA) tracers orally. Plasma phospholipid (PL) and triacylglycerol (TG) fatty acid composition and 13C enrichments of plasma PL fatty acids were determined on day 8. After 8 days of lipid infusion, plasma TGs in the MCT/LCT group had higher contents of C8:0 (0.50 +/- 0.60% vs. 0.10 +/- 0.12%; means +/- SD) and C10:0 (0.66 +/- 0.51% vs. 0.15 +/- 0.17%) than controls. LA content of plasma PLs was slightly lower in the MCT/LCT group (16.47 +/- 1.16% vs. 18.57 +/- 2.09%), whereas long-chain polyunsaturated derivatives (LC-PUFAs) of LA and ALA tended to be higher. The tracer distributions between precursors and products (LC-PUFAs) were not significantly different between groups. Both lipid emulsions achieve similar plasma essential fatty acid (EFA) contents and similar proportional conversion of EFAs to LC-PUFAs. The MCT/LCT emulsion seems to protect EFAs and LC-PUFAs from beta-oxidation.  相似文献   
70.
We show here that a new labyrinthulid strain, L72, isolated from a fallen leaf in the Seto Inland Sea of Japan, produced only docohexaenoic acid (DHA) among all the long-chain polyunsaturated fatty acids (LCPUFAs). The main fatty acid composition was 16:0 (28.9%), 18:0 (7.2%), 18:1 (5.7%), 18:2 (10.4%), and DHA (45.9%) without any other LCPUFA. The lipid content of the strain was 27.4%. The cells had many lipid bodies, which were densely located in all of the cells. On phylogenetic analysis using the 18S rDNA sequence, the strain was located in the labyrinthulids group, forming a monophyletic group with Labyrinthula sp. (strain s) and Labyrinthuila sp. (strain L59). We further tested the culture optimization of strain L72 to evaluate the ability of the strain to produce DHA. The optimum salt concentration and the temperature of the strain were 100% of artificial seawater and 20°C. Strain L72 could grow well on soybean oil (SBO) or soybean lecithin (SBL) as the carbon source. When 20 g/l of SBL was added to the medium, DHA production reached the maximum amount at 0.67 g/l for 14 d. The two important facts, that the strain can use SBL as the main nutrient and contains only DHA among the LCPUFAs, will be of great advantage for industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号