首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   629篇
  免费   33篇
  国内免费   13篇
  2024年   1篇
  2023年   9篇
  2022年   12篇
  2021年   9篇
  2020年   20篇
  2019年   20篇
  2018年   33篇
  2017年   17篇
  2016年   19篇
  2015年   27篇
  2014年   57篇
  2013年   60篇
  2012年   31篇
  2011年   50篇
  2010年   31篇
  2009年   28篇
  2008年   21篇
  2007年   28篇
  2006年   28篇
  2005年   32篇
  2004年   18篇
  2003年   16篇
  2002年   18篇
  2001年   11篇
  2000年   8篇
  1999年   4篇
  1998年   10篇
  1997年   4篇
  1996年   6篇
  1995年   6篇
  1994年   1篇
  1993年   3篇
  1992年   8篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1983年   6篇
  1982年   1篇
  1980年   2篇
  1977年   1篇
  1975年   1篇
排序方式: 共有675条查询结果,搜索用时 484 毫秒
41.
Myocardial infarction is the most common cause of congestive cardiac failure. Free radicals, cytokines, nitric oxide (NO) and antioxidants play a major role both in atherosclerosis and myocardial damage and preservation. In the early stages of atherosclerosis, neutrophils and monocytes infiltrate the intima and generate free radicals which damage the endothelial cells. As a result, production of NO and prostacyclin by the endothelial cells declines, which have cardioprotective actions. This also has relevance to the beneficial action of aspirin since, it can modulate both prostanoid and l-arginine-NO systems and NF-kB translocation. In both acute myocardial infarction and chronic congestive cardiac failure, the plasma levels of various inflammatory mediators such as interleukins and tumour necrosis factor- (TNF) are elevated. TNF, produced by the inflammatory cells and the myocardium, can suppress myocardial contractility and induce the production of free radicals, which in turn can further damage the myocardium. Transforming growth factor (TGF), polyunsaturated fatty acids and the glucose-insulin-potassium regimen can antagonize the harmful actions of TNF and protect the myocardium. This explains why efforts made to reduce the levels of pro-inflammatory cytokines have beneficial action and preserve the myocardium.  相似文献   
42.
Fatty Acid Transport and Utilization for the Developing Brain   总被引:7,自引:0,他引:7  
Abstract: To determine the transport and utilization of dietary saturated, monounsaturated, and n-6 and n-3 polyunsaturated fatty acids for the developing brain and other organs, artificially reared rat pups were fed a rat milk substitute containing the perdeuterated (each 97 atom% deuterium) fatty acids, i.e., palmitic, stearic, oleic, linoleic, and linolenic, from day 7 after birth to day 14 as previously described. Fatty acids in lipid extracts of the liver, lung, kidney, and brain were analyzed by gas chromatography-mass spectrometry to determine their content of each of the deuterated fatty acids. The uptake and metabolism of perdeuterated fatty acid lead to the appearance of three distinct groups of isotopomers: the intact perdeuterated, the newly synthesized (with recycled deuterium), and the natural unlabeled fatty acid. The quantification of these isotopomers permits the estimation of uptake and de novo synthesis of these fatty acids. Intact perdeuterated palmitic, stearic, and oleic acids from the diet were found in liver, lung, and kidney, but not in brain. By contrast, perdeuterated linoleic acid was found in all these organs. Isotopomers of fatty acid from de novo synthesis were observed in palmitic, oleic, and stearic acids in all tissues. The highest enrichment of isotopomers with recycled deuterium was found in the brain. The data indicate that, during the brain growth spurt and the prelude to myelination, the major saturated and monounsaturated fatty acids in brain lipids are exclusively produced locally by de novo biosynthesis. Consequently, the n-6 and n-3 polyunsaturated fatty acids must be transported and delivered to the brain by highly specific mechanisms.  相似文献   
43.
The n-3 polyunsaturated fatty acids (PUFAs), EPA and DHA, as well as estrogen have been shown to decrease circulating levels of triglyceride (TG), but their underlying mode of action is unclear. The purpose of this study was to determine the effects of n-3 PUFA consumption and estrogen injection on TG metabolism. Rats (n = 48) were fed a modified AIN-93G diet with 0, 1, or 2 % EPA + DHA relative to the total energy intake during 12 weeks. At 8 weeks, rats were ovariectomized (OVX), and after a 1-week recovery, rats were injected with either 17β-estradiol-3-benzoate (E2) or corn oil for the last 3 weeks. The n-3 PUFA consumption and E2 injection independently decreased the hepatic expressions of sterol regulatory element-binding protein 1, acetyl-CoA carboxylase 1, fatty acid synthase (FAS), and diacylglycerol acyltransferase 2 (DGAT2) (P < 0.05). There were interactions between n-3 PUFA consumption and E2 injection on hepatic expression of FAS and DGAT2. In addition, n-3 PUFA consumption and E2 injection up-regulated the expression of AMP-activated protein kinase (AMPK), phosphorylated AMPK, peroxisomal proliferator-activated receptor α, and carnitine palmitoyltransferase 1 in liver and skeletal muscle. E2 injection increased the expression of estrogen receptor α and β in skeletal muscle and liver, but n-3 PUFA consumption increased the expression of both receptors only in skeletal muscle. The present study suggests that the hypotriglyceridemic effects of n-3 PUFA consumption and E2 injection could be due to the down-regulation of hepatic TG synthesis and up-regulation of TG oxidation in liver and skeletal muscle in OVX rats.  相似文献   
44.
Unique species of ceramide (Cer) with very-long-chain polyunsaturated fatty acid (VLCPUFA), mainly 28–32 carbon atoms, 4–5 double bonds, in nonhydroxy and 2-hydroxy forms (n-V Cer and h-V Cer, respectively), are generated in rat spermatozoa from the corresponding sphingomyelins during the acrosomal reaction. The aim of this study was to determine the properties of these sperm-distinctive ceramides in Langmuir monolayers. Individual Cer species were isolated by HPLC and subjected to analysis of surface pressure, surface potential, and Brewster angle microscopy (BAM) as a function of molecular packing. In comparison with known species of Cer, n-V Cer and h-V Cer species showed much larger mean molecular areas and increased molecular dipole moments in liquid expanded phases, which suggest bending and partial hydration of the double bonded portion of the VLCPUFA. The presence of the 2-hydoxyl group induced a closer molecular packing in h-V Cer than in their chain-matched n-V Cer. In addition, all these Cer species showed liquid-expanded to liquid-condensed transitions at room temperature. Existence of domain segregation was confirmed by BAM. Additionally, thermodynamic analysis suggests a phase transition close to the physiological temperature for VLCPUFA-Cers if organized as bulk dispersions.  相似文献   
45.
Ion channel conformational changes within the lipid membrane are a key requirement to control ion passage. Thus, it seems reasonable to assume that lipid composition should modulate ion channel function. There is increasing evidence that this implicates not just an indirect consequence of the lipid influence on the physical properties of the membrane, but also specific binding of selected lipids to certain protein domains. The result is that channel function and its consequences on excitability, contractility, intracellular signaling or any other process mediated by such channel proteins, could be subjected to modulation by membrane lipids. From this it follows that development, age, diet or diseases that alter lipid composition should also have an influence on those cellular properties. The wealth of data on the non-annular lipid binding sites in potassium channel from Streptomyces lividans (KcsA) makes this protein a good model to study the modulation of ion channel structure and function by lipids. The fact that this protein is able to assemble into clusters through the same non-annular sites, resulting in large changes in channel activity, makes these sites even more interesting as a potential target to develop lead compounds able to disrupt such interactions and hopefully, to modulate ion channel function. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.  相似文献   
46.
Tocopherols (vitamin E) are lipid soluble antioxidants synthesized by plants and some cyanobacteria. We have earlier reported that overexpression of the γ-tocopherol methyl transferase (γ-TMT) gene from Arabidopsis thaliana in transgenic Brassica juncea plants resulted in an over six-fold increase in the level of α-tocopherol, the most active form of all the tocopherols. Tocopherol levels have been shown to increase in response to a variety of abiotic stresses. In the present study on Brassica juncea, we found that salt, heavy metal and osmotic stress induced an increase in the total tocopherol levels. Measurements of seed germination, shoot growth and leaf disc senescence showed that transgenic Brassica juncea plants overexpressing the γ-TMT gene had enhanced tolerance to the induced stresses. Analysis of the chlorophyll a fluorescence rise kinetics, from the initial “O” level to the “P” (the peak) level, showed that there were differential effects of the applied stresses on different sites of the photosynthetic machinery; further, these effects were alleviated in the transgenic (line 16.1) Brassica juncea plants. We show that α-tocopherol plays an important role in the alleviation of stress induced by salt, heavy metal and osmoticum in Brassica juncea.  相似文献   
47.
Fatty acids, which are the major cardiac fuel, are derived from lipid droplets stored in cardiomyocytes, among other sources. The heart expresses hormone-sensitive lipase (HSL), which regulates triglycerides (TG) breakdown, and the enzyme is under hormonal control. Evidence obtained from adipose tissue suggests that testosterone regulates HSL activity. To test whether this is also true in the heart, we measured HSL activity in the left ventricle of sedentary male rats that had been treated with testosterone supplementation or orchidectomy with or without testosterone substitution. Left ventricle HSL activity against TG was significantly elevated in intact rats supplemented with testosterone. HSL activity against both TG and diacylglyceride was reduced by orchidectomy, whereas testosterone replacement fully reversed this effect. Moreover, testosterone increased left ventricle free fatty acid levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid and carbohydrate metabolism.  相似文献   
48.
Treatment with the ω-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) exerts cardioprotective effects, and suppresses Ca2+-induced opening of the mitochondrial permeability transition pore (MPTP). These effects are associated with increased DHA and EPA, and lower arachidonic acid (ARA) in cardiac phospholipids. While clinical studies suggest the triglyceride lowering effects of DHA and EPA are equivalent, little is known about the independent effects of DHA and EPA on mitochondria function. We compared the effects of dietary supplementation with the ω-3 PUFAs DHA and EPA on cardiac mitochondrial phospholipid fatty acid composition and Ca2+-induced MPTP opening. Rats were fed a standard lab diet with either normal low levels of ω-3 PUFA, or DHA or EPA at 2.5% of energy intake for 8 weeks, and cardiac mitochondria were isolated and analyzed for Ca2+-induced MPTP opening and phospholipid fatty acyl composition. DHA supplementation increased both DHA and EPA and decreased ARA in mitochondrial phospholipid, and significantly delayed MPTP opening as assessed by increased Ca2+ retention capacity and decreased Ca2+-induced mitochondria swelling. EPA supplementation increased EPA in mitochondrial phospholipids, but did not affect DHA, only modestly lowered ARA, and did not affect MPTP opening. In summary, dietary supplementation with DHA but not EPA, profoundly altered mitochondrial phospholipid fatty acid composition and delayed Ca2+-induced MPTP opening.  相似文献   
49.
The study was carried out on 42 breeder couples (42 males and 42 females) of European brown hare (Lepus europaeus), divided into three groups fed three different experimental diets (14 couples/treatment). Two diets were supplemented with n-3 and n-6 polyunsaturated fatty acids (PUFAs; 2% of linseed oil and soybean oil, respectively) and were compared with a control diet supplemented with a monounsaturated fatty acids (2% of olive oil). During the experimental period (from 15 April to 30 September), the following parameters were recorded: days from the beginning of trial to the first parturition, parturition interval, number of parturitions, number of leverets born (alive and dead), dead during suckling, the total number of leverets weaned and feed intake per cage (of males, females and leverets until weaning). Feed intake was not influenced by treatments. In hares fed n-3 and n-6 diets, the days from the beginning of the trial to the first parturition and the parturition interval were similar and were lower compared with control group (63.1 v. 70.6 days, and 37.8 v. 40.9 days, respectively; P < 0.05). Hares from n-6 group had a higher (P < 0.05) number of parturitions per cage during the experimental period than the n-3 and control group that showed a similar value (3.00 v. 2.36, respectively). The total number of leverets born per cage and parturition in n-6 and n-3 groups increased with respect to those fed control diet (P < 0.05). The leverets' mortality rate at birth was higher in n-6 than in n-3 and control group (3.50 v. 2.17, respectively; P < 0.05). In control group, leverets' mortality rate during suckling was lower with respect to n-3 (P < 0.05) and n-6 (P < 0.05), showing the highest value for the latter (P < 0.05). In spite of this higher mortality, the number of leverets weaned per cage and parturition was higher (P < 0.05) in n-6 compared with n-3 group, being the latter higher than the control group (3.12, 2.79 and 2.43, respectively). Our results show that the dietary PUFAs, particularly n-6 supplementation, have a positive influence on the reproductive performances of the European brown hare.  相似文献   
50.
The marine microalga Pavlova salina produces lipids containing approximately 50% omega-3 long chain polyunsaturated fatty acids (LC-PUFA) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Three cDNA sequences, designated PsD4Des, PsD5Des, PsD8Des, were isolated from P. salina and shown to encode three front-end desaturases with Delta4, Delta5 and Delta8 specificity, respectively. Southern analysis indicated that the P. salina genome contained single copies of all three front-end fatty acid desaturase genes. When grown at three different temperatures, analysis of fatty acid profiles indicated P. salina desaturation conversions occurred with greater than 95% efficiency. Real-Time PCR revealed that expression of PsD8Des was higher than for the other two genes under normal growth conditions, while PsD5Des had the lowest expression level. The deduced amino acid sequences from all three genes contained three conserved histidine boxes and a cytochrome b(5) domain. Sequence alignment showed that the three genes were homologous to corresponding desaturases from other microalgae and fungi. The predicted activities of these three front-end desaturases leading to the synthesis of LC-PUFA were also confirmed in yeast and in higher plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号