首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
  2023年   4篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   2篇
  2016年   1篇
  2014年   3篇
  2013年   1篇
  2011年   2篇
  2010年   4篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
11.
Cell division cycle 2 (Cdc2) protein is an essential subunit of M‐phase kinase (MPK), which has a key role in G2/M transition. Even though the control of MPK activity has been well established with regard to the phosphorylation of Cdc2 at Thr 14 and/or Tyr 15 and Thr 161, little is known about the proteolytic control of Cdc2. In this study, we observed that Cdc2 was downregulated under genotoxic stresses and that double‐stranded RNA‐activated protein kinase (PKR) was involved in the process. The PKR‐mediated Tyr4 phosphorylation triggered Cdc2 ubiquitination. Phospho‐mimic mutations at the Tyr 4 residue (Y4D or Y4E) caused significant ubiquitination of Cdc2 even in the absence of PKR. Our findings demonstrate that (i) PKR, Ser/Thr kinase, phosphorylates its new substrate Cdc2 at the Tyr 4 residue, (ii) PKR‐mediated Tyr 4‐phosphorylation facilitates Cdc2 ubiquitination and proteosomal degradation, (iii) unphosphorylated Tyr 4 prevents Cdc2 ubiquitination, and (iv) downstream from p53, PKR has a crucial role in G2 arrest and triggers Cdc2 downregulation under genotoxic conditions.  相似文献   
12.
NFκB signaling plays a significant role in human disease, including breast and ovarian carcinoma, insulin resistance, embryonic lethality and liver degeneration, rheumatoid arthritis, aging and Multiple Myeloma (MM). Inhibitor of κB (IκB) kinase β (IKKβ) regulates canonical Nuclear Factor κB (NFκB) signaling in response to inflammation and cellular stresses. NFκB activation requires Lys63-linked (K63-linked) ubiquitination of upstream proteins such as NEMO or TAK1, forming molecular complexes with membrane-bound receptors. We demonstrate that IKKβ itself undergoes K63-linked ubiquitination. Mutations in IKKβ at Lys171, identified in Multiple Myeloma and other cancers, lead to a dramatic increase in kinase activation and K63-linked ubiquitination. These mutations also result in persistent activation of STAT3 signaling. Liquid chromatography (LC)-high mass accuracy tandem mass spectrometry (MS/MS) analysis identified Lys147, Lys418, Lys555 and Lys703 as predominant ubiquitination sites in IKKβ. Specific inhibition of the UBC13-UEV1A complex responsible for K63-linked ubiquitination establishes Lys147 as the predominant site of K63-ubiquitin conjugation and responsible for STAT3 activation. Thus, IKKβ activation leads to ubiquitination within the kinase domain and assemblage of a K63-ubiquitin conjugated signaling platform. These results are discussed with respect to the importance of upregulated NFκB signaling known to occur frequently in MM and other cancers.  相似文献   
13.
The downregulation of cell surface receptors by endocytosis is a fundamental requirement for the termination of signalling responses and ubiquitination is a critical regulatory step in receptor regulation. The K5 gene product of Kaposi's sarcoma‐associated herpesvirus is an E3 ligase that ubiquitinates and downregulates several cell surface immunoreceptors, including major histocompatibility complex (MHC) class I molecules. Here, we show that K5 targets the membrane proximal lysine of MHC I for conjugation with mixed linkage polyubiquitin chains. Quantitative mass spectrometry revealed an increase in lysine‐11, as well as lysine‐63, linked polyubiquitin chains on MHC I in K5‐expressing cells. Using a combination of mutant ubiquitins and MHC I molecules expressing a single cytosolic lysine residue, we confirm a functional role for lysines‐11 and ‐63 in K5‐mediated MHC I endocytosis. We show that lysine‐11 linkages are important for receptor endocytosis, and that complex mixed linkage polyubiquitin chains are generated in vivo.  相似文献   
14.
Hepatic ischaemia/reperfusion (I/R) injury is a major clinical problem during liver surgical procedures, which usually lead to early transplantation failure and higher organ rejection rate, and current effective therapeutic strategies are still limited. Therefore, in‐depth exploring of the molecular mechanisms underlying liver I/R injury is key to the development of new therapeutic methods. β‐arrestins are multifunctional proteins serving as important signalling scaffolds in numerous physiopathological processes, including liver‐specific diseases. However, the role and underlying mechanism of β‐arrestins in hepatic I/R injury remain largely unknown. Here, we showed that only ARRB1, but not ARRB2, was down‐regulated during liver I/R injury. Hepatocyte‐specific overexpression of ARRB1 significantly ameliorated liver damage, as demonstrated by decreases in serum aminotransferases, hepatocellular necrosis and apoptosis, infiltrating inflammatory cells and secretion of pro‐inflammatory cytokines relative to control mice, whereas experiments with ARRB1 knockout mice gotten opposite effects. Mechanistically, ARRB1 directly interacts with ASK1 in hepatocytes and inhibits its TRAF6‐mediated Lysine 6‐linked polyubiquitination, which then prevents the activation of ASK1 and its downstream signalling pathway during hepatic I/R injury. In addition, inhibition of ASK1 remarkably abolished the disruptive effect result from ARRB1 deficiency in liver I/R injury in vivo, indicating that ASK1 was required for ARRB1 function in hepatic I/R injury. In conclusion, we proposed that ARRB1 is a novel protective regulator during liver I/R injury, and modulation of the regulatory axis between ARRB1 and ASK1 could be a novel therapeutic strategy to prevent this pathological process.  相似文献   
15.
16.
Mahogunin ring finger-1 (MGRN1) is a cytosolic ubiquitin ligase whose disruption or interaction with some isoforms of cytosolically exposed prion protein leads to spongiform neurodegeneration and also lack of which results in reduced embryonic viability due to mispatterning of the left–right (LR) axis during development. Here we demonstrate an interaction between the cytoskeletal protein α-tubulin and MGRN1. In cultured cell systems, loss of the ubiquitin E3 ligase activity of MGRN1 results in spindle misorientation and decreased α-tubulin polymerization, an effect also seen in primary cells. α-Tubulin was post-translationally modified by MGRN1 via noncanonical K6-linked polyubiquitination. This was significant because expression of catalytically inactive MGRN1 and/or ubiquitin mutant capable of only monoubiquitination resulted in similar mitotic spindle misorientation. The modulatory effect of MGRN1 was specific for α-tubulin and similar changes could not be detected in β- or γ-tubulin. However, catalytic inactivation of MGRN1 did not abrogate monoubiquitination of α-tubulin, thus unraveling a unique dual mode of ubiquitination by an unknown E3 ligase and MGRN1. MGRN1-mediated α-tubulin modification, and hence its stability, may highlight a key event in the LR patterning during embryogenesis.  相似文献   
17.
Several mechanisms have been proposed for the synthesis of substrate-linked ubiquitin chains. HECT ligases directly catalyse protein ubiquitination and have been found to non-covalently interact with ubiquitin. We report crystal structures of the Nedd4 HECT domain, alone and in complex with ubiquitin, which show a new binding mode involving two surfaces on ubiquitin and both subdomains of the HECT N-lobe. The structures suggest a model for HECT-to-substrate ubiquitin transfer, in which the growing chain on the substrate is kept close to the catalytic cysteine to promote processivity. Mutational analysis highlights differences between the processes of substrate polyubiquitination and self-ubiquitination.  相似文献   
18.
The ubiquitin proteasome system (UPS) contributes to the pathophysiology of neurodegenerative diseases, and it is also a major determinant of synaptic protein degradation and activity. Recent studies in rodents and in the fruit fly Drosophila have shown that the activity of the UPS is involved in axonal degeneration. Increased knowledge of the UPS in synaptic and axonal reactions may provide novel drug targets for treatments of neuronal injuries and neurodegenerative disorders.  相似文献   
19.
20.
Others and we previously showed that the vitamin D receptor (VDR) is subject to degradation by the 26S proteasome and that treatment with 1,25‐dihydroxyvitamin D3 (1,25D3) inhibited this degradation. In the present study, we found that in osteoblasts, but not in intestinal epithelial cells, the VDR was susceptible to degradation by the 26S proteasome. The subcellular site for degradation of the VDR in osteoblasts is the cytoplasm and the site for ligand‐dependent protection of the VDR from the 26S proteasome is the chromatin. These direct relationships between nuclear localization and protection of the VDR from 26S proteasome degradation led us to hypothesize that the unoccupied cytoplasmic VDR is a substrate for polyubiquitination, which targets VDR for degradation by the 26S proteasome, and that nuclear localization has the ability to protect the VDR from polyubiquitination and degradation. To test these hypotheses, we used Cos‐1 cells transfected with human VDR and histidine‐tagged ubiquitin expression vectors. We found that unoccupied VDR was polyubiquitinated and that 1,25D3 inhibited this modification. Mutations in the nuclear localization signal of VDR (R49W/R50G and K53Q/R54G/K55E) or in the dimerization interface of VDR with retinoid X receptor (M383G/Q385A) abolished the ability of 1,25D3 to protect the VDR from polyubiquitination, although these mutations had no effect on the ligand‐binding activity of VDR. Therefore, we concluded that in some cellular environments unoccupied cytoplasmic VDR is susceptible to polyubiquitination and proteasome degradation and that ligand‐dependent heterodimerization and nuclear localization protect the VDR from these modifications. J. Cell. Biochem. 110: 926–934, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号