首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9220篇
  免费   607篇
  国内免费   584篇
  10411篇
  2024年   16篇
  2023年   129篇
  2022年   157篇
  2021年   185篇
  2020年   214篇
  2019年   277篇
  2018年   262篇
  2017年   215篇
  2016年   219篇
  2015年   244篇
  2014年   381篇
  2013年   694篇
  2012年   356篇
  2011年   485篇
  2010年   364篇
  2009年   472篇
  2008年   506篇
  2007年   522篇
  2006年   556篇
  2005年   432篇
  2004年   402篇
  2003年   390篇
  2002年   361篇
  2001年   276篇
  2000年   209篇
  1999年   214篇
  1998年   188篇
  1997年   202篇
  1996年   134篇
  1995年   174篇
  1994年   133篇
  1993年   106篇
  1992年   126篇
  1991年   90篇
  1990年   87篇
  1989年   83篇
  1988年   59篇
  1987年   55篇
  1986年   34篇
  1985年   72篇
  1984年   92篇
  1983年   64篇
  1982年   59篇
  1981年   30篇
  1980年   18篇
  1979年   19篇
  1978年   9篇
  1977年   12篇
  1974年   9篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Using cytochemical method,microspectrophotometry and image analysis,effects of va-soactive intestinal peptide(VIP)on activities of succinic dehydrogenase(SDH)and alkalinephosphatase(ALP)in rat hepatoma cells were studied in vitro.The results showed that thehepatoma cell expressed potent positive reactions of SDH and ALP,the positive positionswere located at the cell membranes and/or cytoplasm.Having been treated with VIP,ALPdecreased obviously in activity(P<0. 01,compared with hepatoma cells untreated by VIP).The sites of ALP activty were chiefly located at the cell membranes,particularly at the cell-cell contacts.Cultured rat hepatoma cells had intensive SDH activity in their cytoplasm.Compared with untreated eclls,there was no marked difference in the intensity of SDH activ-ity in VIP-treated hepatoma cells(P>0.05).  相似文献   
72.
Controlling certain diseases using peptide drugs has remarkably increased in the past two decades. In this regard, a generic formulation is an upfront solution to fulfill market demands. Ganirelix, a leading peptide active pharmaceutical ingredient (API) primarily used as a gonadotropin-releasing hormone antagonist (GnRH), has established a potential market value worldwide. But its generic formulation mandates detailed impurity profiles from a synthetic source and contemplates the sameness of a reference-listed drug (RLD). Post-chemical synthesis and processing of Ganirelix, some commercial sources have revealed two new potential impurities among many known, which show the deletion of an ethyl group from the hArg(Et)2 residue at the sixth and eighth positions, named des-ethyl-Ganirelix. These impurities are unprecedented in traditional peptide chemistry, and such monoethylated-hArg building blocks are not easily accessible commercially to synthesize these two impurities. Here, we have outlined the synthesis, purification, and enantiomeric purity characterization of the amino acids and their incorporation in the Ganirelix peptide sequence to synthesize these potential peptide impurities. This methodology will enable the convenient synthesis of side-chain substituted Arg and hArg derivatives in peptide drug discovery platforms.  相似文献   
73.
Peptide purification by high-performance liquid chromatography (HPLC) is associated with high solvent consumption, relatively large effort and lack of efficient parallelization. As an alternative, many catch-and-release (c&r) purification methods have been developed over the last decades to enable the efficient parallel purification of peptides originating from solid-phase peptide synthesis (SPPS). However, with one exception, none of the c&r systems has been widely established in industry and academia until today. Herein, we present an entirely new chromatography-free purification concept for peptides synthesized on a solid support, termed reactive capping purification (RCP). The RCP method relies on the capping of truncation peptides arising from incomplete coupling of amino acids during SPPS with a reactive tag. The reactive tag contains a masked functionality that, upon liberation during cleavage from the resin, enables straightforward purification of the peptide by incubation with a resin-bound reactive moiety. In this work, two different reactive tags based on masked thiols were developed. Capping with these reactive tags during SPPS led to effective modification of truncated sequences and subsequent removal of the latter by chemoselective reaction with a maleimide-functionalized solid support. By introducing a suitable protecting group strategy, the thiol-based RCP method described here could also be successfully applied to a thiol-containing peptide. Finally, the purification of a 15-meric peptide by the RCP method was demonstrated. The developed method has low solvent consumption, has the potential for efficient parallelization, uses readily available reagents, and is experimentally simple to perform.  相似文献   
74.
The insulin superfamily comprises a group of peptides with diverse physiological functions and is conserved across the animal kingdom. Insulin-like peptides (ILPs) of crustaceans are classified into four major types: insulin, relaxin, gonadulin, and androgenic gland hormone (AGH)/insulin-like androgenic gland factor (IAG). Of these, the physiological functions of AGH/IAG have been clarified to be the regulation of male sex differentiation, but those of the other types have not been uncovered. In this study, we chemically synthesized Maj-ILP1, an ILP identified in the ovary of the kuruma prawn Marsupenaeus japonicus, using a combination of solid-phase peptide synthesis and regioselective disulfide bond formation reactions. As the circular dichroism spectral pattern of synthetic Maj-ILP1 is typical of other ILPs reported thus far, the synthetic peptide likely possessed the proper conformation. Functional analysis using ex vivo tissue incubation revealed that Maj-ILP1 significantly increased the expression of the yolk protein genes Maj-Vg1 and Maj-Vg2 in the hepatopancreas and Maj-Vg1 in the ovary of adolescent prawns. This is the first report on the synthesis of a crustacean ILP other than IAGs and also shows the positive relationship between the reproductive process and female-dominant ILP.  相似文献   
75.
76.
Electrostatic interactions are among the key factors determining the structure and function of proteins. Here we report experimental results that illuminate the functional importance of local dipoles to these interactions. The refined 1.7-A X-ray structure of the liganded form of the sulfate-binding protein, a primary sulfate active transport receptor of Salmonella typhimurium, shows that the sulfate dianion is completely buried and bound by hydrogen bonds (mostly main-chain peptide NH groups) and van der Waals forces. The sulfate is also closely linked, via one of these peptide units, to a His residue. It is also adjacent to the N-termini of three alpha-helices, of which the two shortest have their C-termini "capped" by Arg residues. Site-directed mutagenesis of the recombinant Escherichia coli sulfate receptor had no effect on sulfate-binding activity when an Asn residue was substituted for the positively charged His and the two Arg (changed singly and together) residues. These results, combined with other observations, further solidify the idea that stabilization of uncompensated charges in a protein is a highly localized process that involves a collection of local dipoles, including those of peptide units confined to the first turns of helices. The contribution of helix macrodipoles appears insignificant.  相似文献   
77.
Bcr-Abl, a nonreceptor tyrosine kinase, is associated with leukemias, especially chronic myeloid leukemia (CML). Deletion of Abl's N-terminal region, to which myristoyl is linked, renders the Bcr-Abl fusion oncoprotein constitutively active. The substitution of Abl's N-terminal region by Bcr enables Bcr-Abl oligomerization. Oligomerization is critical: it promotes clustering on the membrane, which is essential for potent MAPK signaling and cell proliferation. Here we decipher the Bcr-Abl specific, step-by-step oligomerization process, identify a specific packing surface, determine exactly how the process is structured and identify its key elements. Bcr's coiled coil (CC) domain at the N-terminal controls Bcr-Abl oligomerization. Crystallography validated oligomerization via Bcr-Abl dimerization between two Bcr CC domains, with tetramerization via tight packing between two binary assemblies. However, the structural principles guiding Bcr CC domain oligomerization are unknown, hindering mechanistic understanding and drugs exploiting it. Using molecular dynamics (MD) simulations, we determine that the binary complex of the Bcr CC domain serves as a basic unit in the quaternary complex providing a specific surface for dimer–dimer packing and higher-order oligomerization. We discover that the small α1-helix is the key. In the binary assembly, the helix forms interchain aromatic dimeric packing, and in the quaternary assembly, it contributes to the specific dimer–dimer packing. Our mechanism is supported by the experimental literature. It offers the key elements controlling this process which can expand the drug discovery strategy, including by Bcr CC-derived peptides, and candidate residues for small covalent drugs, toward quenching oligomerization, supplementing competitive and allosteric tyrosine kinase inhibitors.  相似文献   
78.
To investigate the role of proline in defining β turn conformations within cyclic hexa- and pentapeptides we synthesized and determined the conformations of a series of L - and D -proline-containing peptides by means of 2D NMR spectroscopy and restrained molecular dynamics simulations. Due to cis/trans isomerism the L -proline peptides adopt at least two different conformations that are analyzed and compared to the structures of the corresponding D -proline peptides. The cis conformations of the compounds cyclo(-Pro-Ala-Ala-Pro-Ala-Ala-), cyclo(-Arg-Gly-Asp-Phe-Pro-Gly-), cyclo(-Arg-Gly-Asp-Phe-Pro-Ala-), cyclo(-Pro-Ala-Ala-Ala-Ala--), and cyclo(-Pro-Ala-Pro-Ala-Ala-) form uncommon βVI turns that mimic the turn geometries found in crystallographically refined protein structures at such a detailed level that even preferred side chain orientations are reproduced. The ratios of the cis/trans isomers are analyzed in terms of the steric demand of the proline-following residue. The conformational details derived from this study illustrate the importance of the examination of small model compounds derived from protein loop regions, especially if bioactive recognition sequences, such as RGD (Arg-Gly-Asp), are incorporated. © 1993 Wiley-Liss, Inc.  相似文献   
79.
Human intestinal Caco-2 cells were cultured under serum-free conditions on an insoluble collagen and FCS matrix (Caco-2-SF), and a comparison was made between several characteristics of Caco-2 and Caco-2-SF cells. Their morphological appearance was identical. Slight differences were found in cell growth and expression of brush border enzymes between Caco-2 and Caco-2-SF cells. Similar levels of activity of Gly-Gly transport were expressed in both types of cell. Caco-2 cells cultured on permeable filters showed high transepithelial electrical resistance (TEER), indicating the high monolayer integrity. The transepithelial transport activity for glucose, alanine and Gly-Gly was detected by measuring the change in short-circuit current (Isc) after adding each of these nutrients to the apical chamber. In Caco-2-SF cells, such parameters as TEER and Isc were reduced drastically, suggesting that the monolayer integrity and cell polarity that are important for transepithelial transport were not attained. These parameters, however, could be restored by adding FCS or by milk whey. The result suggested that FCS and milk whey contain factors which regulate the formation of the tight junctions and, consequently, the development of cell polarity. Thus the Caco-2-SF cell-culture system will provide a useful model for studying factors which regulate the intestinal transepithelial transport functions.Abbreviations BCECF 2,7-bis(carboxyethyl)-5(6)-carboxyfluorescein - TEER transepithelial electrical resistance - LY lucifer yellow CH lithium salt  相似文献   
80.
In recent years, black ginseng, a new type of processed ginseng product, has attracted the attention of scholars globally. Ginsenoside and ginseng polysaccharide, the main active substances of black ginseng, have been shown to carry curative effects for many diseases. This article focuses on the mechanism of their action in anti-inflammatory response, which is mainly divided into three aspects: activation of immune cells to exert immune regulatory response; participation in inflammatory response-related pathways and regulation of the expression level of inflammatory factors; effect on the metabolic activity of intestinal flora. This study identifies active anti-inflammatory components and an action mechanism of black ginseng showing multi-component, multi-target, and multi-channel characteristics, providing ideas and a basis for a follow-up in-depth study of its specific mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号