首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   4篇
  国内免费   4篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  1998年   1篇
  1994年   1篇
  1992年   2篇
  1989年   2篇
排序方式: 共有43条查询结果,搜索用时 15 毫秒
41.
42.
The full-length provirus of human T-cell leukemia virus type I (HTLV-I) was isolated from MT-2, a lymphoid cell line producing HTLV-I. In transfected cells, structural proteins of HTLV-I, the gag and env products, were formed and processed in the same manner as observed in MT-2 cells. The nucleotide sequence was determined for a region between the gag and pol genes of the proviral DNA clone containing an open-reading frame. The deduced amino acid sequences show that this open-reading frame encodes a putative HTLV-I protease. The protease gene (pro) of HTLV-I was investigated using a vaccinia virus expression vector. Processing of 53k gag precursor polyprotein into mature p19, p24, and p15 gag structural proteins was detectable with a recombinant plasmid harboring the entire gag- and protease-coding sequence. We demonstrated that the protease processed the gag precursor polyprotein in a trans-action. A change in the sequence Asp(64)-Thr-Gly, the catalytic core sequence among aspartyl proteases, to Gly-Thr-Gly was shown to abolish correct processing, suggesting that HTLV-I protease may belong to the aspartyl protease group. The 76k gag-pro precursor polyprotein was identified, implying that a cis-acting function of HTLV-I protease may be necessary to trigger the initial cleavage event for its own release from a precursor protein, followed by the release of p53 gag precursor protein. The p53 gag precursor protein is then processed by the trans-action of the released protease to form p19, p24, and p15.  相似文献   
43.
Compact viral genomes such as those found in noroviruses, which cause significant enteric disease in humans, often encode only a few proteins, but affect a wide range of processes in their hosts and ensure efficient propagation of the virus. Both human and mouse noroviruses (MNVs) persistently replicate and are shed in stool, a highly effective strategy for spreading between hosts. For MNV, the presence of a glutamate rather than an aspartate at position 94 of the NS1/2 protein was previously shown to be essential for persistent replication and shedding. Here, we analyze these critical sequences of NS1/2 at the structural level. Using solution nuclear magnetic resonance methods, we determined folded NS1/2 domain structures from a nonpersistent murine norovirus strain CW3, a persistent strain CR6, and a persistent mutant strain CW3D94E. We found an unstructured PEST‐like domain followed by a novel folded domain in the N‐terminus of NS1/2. All three forms of the domain are stable and monomeric in solution. Residue 94, critical for determining persistence, is located in a reverse turn following an α‐helix in the folded domain. The longer side chain of glutamate, but not aspartate, allows interaction with the indole group of the nearby tryptophan, reshaping the surface of the domain. The discrimination between glutamyl and aspartyl residue is imposed by the stable tertiary conformation. These structural requirements correlate with the in vivo function of NS1/2 in persistence, a key element of norovirus biology and infection. Proteins 2014; 82:1200–1209. © 2013 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号