首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   560篇
  免费   60篇
  国内免费   5篇
  625篇
  2024年   1篇
  2023年   8篇
  2022年   4篇
  2021年   9篇
  2020年   16篇
  2019年   18篇
  2018年   16篇
  2017年   24篇
  2016年   22篇
  2015年   19篇
  2014年   19篇
  2013年   37篇
  2012年   9篇
  2011年   26篇
  2010年   8篇
  2009年   31篇
  2008年   21篇
  2007年   43篇
  2006年   23篇
  2005年   30篇
  2004年   34篇
  2003年   25篇
  2002年   20篇
  2001年   17篇
  2000年   18篇
  1999年   22篇
  1998年   5篇
  1997年   7篇
  1996年   10篇
  1995年   7篇
  1994年   9篇
  1993年   8篇
  1992年   10篇
  1991年   9篇
  1990年   14篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有625条查询结果,搜索用时 15 毫秒
91.
Apex predators perform important functions that regulate ecosystems worldwide. However, little is known about how ecosystem regulation by predators is influenced by human activities. In particular, how important are top-down effects of predators relative to direct and indirect human-mediated bottom-up and top-down processes? Combining data on species'' occurrence from camera traps and hunting records, we aimed to quantify the relative effects of top-down and bottom-up processes in shaping predator and prey distributions in a human-dominated landscape in Transylvania, Romania. By global standards this system is diverse, including apex predators (brown bear and wolf), mesopredators (red fox) and large herbivores (roe and red deer). Humans and free-ranging dogs represent additional predators in the system. Using structural equation modelling, we found that apex predators suppress lower trophic levels, especially herbivores. However, direct and indirect top-down effects of humans affected the ecosystem more strongly, influencing species at all trophic levels. Our study highlights the need to explicitly embed humans and their influences within trophic cascade theory. This will greatly expand our understanding of species interactions in human-modified landscapes, which compose the majority of the Earth''s terrestrial surface.  相似文献   
92.
Phytoseiids are known to attack whiteflies, but it is an open question whether they can be used for biological control of these pest insects. Preselection experiments in the laboratory showed that two out of five phytoseiid species tested, Euseius scutalis and Typhlodromips swirskii, stood out in terms of their ability to develop and reproduce on a diet of Bemisia tabaci immatures. In this paper, we show that both predators are able to suppress whitefly populations on isolated cucumber plants in a greenhouse. Predatory mites were released 2 weeks in advance of the release of B. tabaci. To enable their survival and promote their population growth, they were provided weekly with alternative food, that is, Typha sp. pollen. A few weeks after whitefly introduction, the numbers of adult whiteflies on plants with predators were consistently lower than on plants without predators, where B. tabaci populations grew exponentially. After 9 weeks, this amounted to a 16- to 21-fold difference in adult whitefly population size. This shows that the two phytoseiid species are promising biocontrol agents of B. tabaci on greenhouse cucumber. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
93.
Crumrine PW 《Oecologia》2005,145(1):132-139
Interactions between different size classes of predator species have the potential to influence survival of prey species in intraguild predation (IGP) systems, but few studies test for these effects. Using a substitutive design in a field setting, I measured the effects of two size classes of IG predators (large and small larvae of the dragonfly Anax junius) on the mortality of IG prey (larvae of the dragonfly Pachydiplax longipennis). I also examined whether combinations of large A. junius and P. longipennis and small A. junius and P. longipennis had substitutable effects on shared prey (larvae of the damselfly Ischnura verticalis). The presence of both size classes of A. junius, when alone and in combination with P. longipennis, significantly increased mortality of I. verticalis. In the presence of P. longipennis, large and small A. junius had similar effects on the mortality of I. verticalis, and effects of size-structured assemblages of A. junius were similar to the effects of each size class alone at the same density. The effects of the two size classes of A. junius on P. longipennis differed, and P. longipennis mortality was lower when exposed to size structured assemblages of A. junius than when exposed to only large A. junius at the same density. Results were similar to those in a laboratory study, although the effect of P. longipennis on I. verticalis was much lower in the field setting. These results demonstrate that interactions between different size classes of IG predators promote the survival of IG prey and highlight the importance of within-species size structure as a characteristic that may promote the coexistence of predators in IGP systems.  相似文献   
94.
The invasive canopy alga, Codium fragile ssp. tomentosoides, first observed at the Isles of Shoals in 1983, has become the dominant canopy species to 8 m throughout the islands. Codium populations are replacing themselves at most sites in what appears to be a new, climax, canopy species. However, Codium densities have declined in protected Gosport Harbor areas where it first became established. Codium has only slowly expanded its presence in adjacent nearshore subtidal habitats. Recent studies suggest a combination of factors that may be influencing the relative success of populations between habitats. The herbivorous sea slug, Placida dendritica, may be reducing populations in protected areas in spite of predators such as the green crab, Carcinus maenas, while surge may inhibit herbivore buildup in exposed habitats. Temperature instability due to localized, wind-driven upwelling may be slowing the buildup of subtidal Codium populations in nearshore sites. The combination of Codium dominance and the acquisition of increasing epibiont diversity are producing a new, potentially more complex community state than the previous kelp-dominated climax typical of the Gulf of Maine.  相似文献   
95.
96.
Habitat preference, seasonal occurrence, starvation resistance, hatching eggs ofBranchipus schaefferi, and effects of predation onB. schaefferi were studied.Branchipus was only present in turbid, unvegetated ponds and absent in ponds which contain higher aquatic vegetation and theSpirogyra sp. The first individuals ofB. schaefferi appeared in April when water temperature was 10 °C and the last adults in November at a water temperature of 3.5 °C. Up to 6 reproducing generations were observed during this period. Abundance ofB. schaefferi was higher in temporary ponds than in permanent ponds. Sex ratio was close to unity for most of the year. Body size ofB. schaefferi males and females was significantly positively correlated with pond volume. Without foodB. schaefferi could survive for 1.5 to 2 days at 20 °C and 4 to 5 days at 10 °C. Hatching success of eggs decreased when eggs were dried for 7 months. Freezing of eggs had no effect on hatching success. From] the predators tested,Chaoborus sp. larvae clearly selected smallB. schaefferi; one consumed approximately 6Branchipus d–1 at a density of 6 to 12 prey 1–1. The other predators, dragonfly larvae, and larvae and adults ofTriturus alpestris selected alternative prey types, for exampleTubifex sp. and ostracods.  相似文献   
97.
Abstract Coevolution is thought to have led to many small mammal species avoiding the scent marks of their main mammalian predators, as they provide a reliable cue to predation risk. Most support for this hypothesis comes from northern hemisphere predator/prey systems, however, it is unclear whether this avoidance of predator faecal odour occurs in Australia's mammalian fauna, which has evolved in relative isolation from the rest of the world, and is dominated by marsupials rather than placentals. We tested this theory for an Australian system with marsupial and placental predators and prey, that share a long‐term (>1 million years) or short‐term (<150 years) exposure to each other. The predators were the native marsupial tiger quoll Dasyurus maculatus and the introduced placental red fox Vulpes vulpes. The potential prey were three native rodent species, the bush rat Rattus fuscipes, the swamp rat Rattus lutreolus, the eastern chestnut mouse Pseudomys gracilicaudatus, and the marsupial brown antechinus Antechinus stuartii. Small mammals were captured in Elliott traps with 1/3 of traps treated with fox faeces, 1/3 treated with quoll faeces and the remainder left untreated. The native rodent species all showed avoidance of both tiger quoll and red fox odours whereas the marsupial antechinus showed no responses to either odour. Either predator odour avoidance has not evolved in this marsupial or their reaction to predator odours may be exhibited in ways which are not recognizable through trapping. The avoidance by the rodents of fox odour as well as quoll odour indicates this response may either be due to common components in fox and quoll odour, or it may be a recently evolved response.  相似文献   
98.
The mechanism that facilitates the evolution of maternal care is ambiguous in egg‐laying terrestrial vertebrates: does the ability of mothers to recognize their own eggs lead them under some circumstances to begin providing care or can maternal care evolve from simply being in close proximity to the eggs (e.g. through territorial behaviour)? This question is difficult to answer because in most species, parental care is either absent altogether or present; in only a few species we have the opportunity to observe intraspecific variation in the expression of parental care. We studied a population of long‐tailed skinks (Eutropis longicaudata) in which females have recently evolved maternal care from a noncaring state. Females on Orchid Island, Taiwan, remain with their eggs during incubation and when doing so, actively deter egg predation by egg‐eating snakes (Oligodon formosanus); in all other populations, females lack post‐ovipositional maternal care. Nest‐guarding females on Orchid Island (i) showed antipredator behaviours only in the original nest site in which they laid eggs, even after we removed all of the eggs or substituted them with those of a conspecific; (ii) protect any eggs present inside the original nest site (even when the eggs belong to a conspecific); and (iii) develop this behaviour while gravid (i.e. prior to laying eggs). This supports the hypothesis that long‐tailed skinks cannot recognize their own eggs, suggesting that maternal care is a directed form of territoriality only expressed towards egg‐eating snakes and only during reproduction. Nest guarding is among the most primitive forms of parental care, and the recent evolution of this behaviour in a single population provides insight into one of the mechanisms by which parental care can originate in terrestrial vertebrates.  相似文献   
99.
棘冠海星暴发及其对珊瑚礁的生态影响研究进展   总被引:1,自引:0,他引:1  
棘冠海星的反复暴发是导致印度—太平洋区域珊瑚礁生态系统退化的最主要原因之一。然而,我国对棘冠海星的研究非常有限。本文综述了国内外关于棘冠海星及其暴发的生态影响和应对策略的研究进展,得出以下主要结论:1)雌性棘冠海星个体每年产卵数量高达50万—2亿个,环境因素变化只要导致幼虫和幼体存活率的轻微提高,成体就将得到大量补充;2)棘冠海星暴发的阈值为1000—1500个/km2,暴发周期为10—27 a,每次暴发持续1—10 a,最终可能以“种群集体感染疾病而崩溃”结束;3)棘冠海星暴发对印度洋及太平洋东部和北部珊瑚礁的破坏性非常小,却直接导致太平洋的西部和南部珊瑚礁90%以上的珊瑚死亡,并通过改变珊瑚群落组成、减少珊瑚和鱼类多样性而对珊瑚礁产生间接影响;4)关于棘冠海星暴发原因的假说中“陆地营养物质输入假说”和“捕食者过度捕捞假说”得到了最普遍的认可,但都不能解释所有的暴发事件;5)应对棘冠海星暴发的主要策略有改善水质、设立保护区、投放天敌和人工清理等,其中人工清理是最直接有效的策略,但迄今并没有发现可长期抑制棘冠海星暴发的方法。因此,急需加强对棘冠海星的深入研究,探查...  相似文献   
100.
We compared the response to resource enhancement of a simple empirical model of intra‐guild predation (IGP) to the predictions of published, simple mathematical models of asymmetric IGP (a generalist IG Predator that feeds both on a specialist IG Prey and a Resource that it shares with the IG Prey). The empirical model was a food‐web module created by pooling species abundances across many families in a speciose community of soil micro‐arthropods into three categories: IG Predator (large predatory mites), IG Prey (small predatory mites), and a shared Resource (fungivorous mites and springtails). By pooling abundances of species belonging to broadly defined functional groups, we tested the hypothesis that IGP is a dominant organizing principle in this community. Simple mathematical models of asymmetric IGP predict that increased input of nutrients and energy to the shared Resource will increase the equilibrium density of Resource and IG Predator, but will decrease that of IG Prey. In a field experiment, we observed how the three categories of the empirical model responded to two rates of addition of artificial detritus, which enhanced the food of fungivores, the Resource of the IGP module. By the experiment''s end, fungivore densities had increased ~1.5× (ratio of pooled fungivore densities in the higher‐input treatment to plots with no addition of detritus), and densities of IG Predators had increased ~4×. Contrary to the prediction of mathematical models, IG Prey had not decreased, but instead had increased ~1.5×. We discuss possible reasons for the failure of the empirical model to agree with IGP theory. We then explore analogies between the behavior of the empirical model and another mathematical model of trophic interactions as one way to gain insights into the trophic connections in this community. We also propose one way forward for reporting comparisons of simple empirical and mathematical models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号