首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1839篇
  免费   217篇
  国内免费   176篇
  2232篇
  2024年   8篇
  2023年   44篇
  2022年   44篇
  2021年   82篇
  2020年   87篇
  2019年   107篇
  2018年   101篇
  2017年   91篇
  2016年   87篇
  2015年   91篇
  2014年   119篇
  2013年   98篇
  2012年   103篇
  2011年   80篇
  2010年   69篇
  2009年   86篇
  2008年   78篇
  2007年   97篇
  2006年   66篇
  2005年   48篇
  2004年   39篇
  2003年   42篇
  2002年   36篇
  2001年   23篇
  2000年   29篇
  1999年   16篇
  1998年   27篇
  1997年   16篇
  1996年   14篇
  1995年   26篇
  1994年   23篇
  1993年   21篇
  1992年   25篇
  1991年   16篇
  1990年   22篇
  1989年   21篇
  1988年   33篇
  1987年   24篇
  1986年   11篇
  1985年   33篇
  1984年   39篇
  1983年   31篇
  1982年   25篇
  1981年   22篇
  1980年   12篇
  1979年   5篇
  1978年   7篇
  1977年   4篇
  1976年   2篇
  1973年   1篇
排序方式: 共有2232条查询结果,搜索用时 15 毫秒
161.
Key advances are being made on the structures of predator–prey food webs and competitive communities that enhance their stability, but little attention has been given to such complexity–stability relationships for mutualistic communities. We show, by way of theoretical analyses with empirically informed parameters, that structural properties can alter the stability of mutualistic communities characterized by nonlinear functional responses among the interacting species. Specifically, community resilience is enhanced by increasing community size (species diversity) and the number of species interactions (connectivity), and through strong, symmetric interaction strengths of highly nested networks. As a result, mutualistic communities show largely positive complexity–stability relationships, in opposition to the standard paradox. Thus, contrary to the commonly-held belief that mutualism's positive feedback destabilizes food webs, our results suggest that interplay between the structure and function of ecological networks in general, and consideration of mutualistic interactions in particular, may be key to understanding complexity–stability relationships of biological communities as a whole.  相似文献   
162.
163.
Polypeptides containing between 4 and 32 repeats of a resilin‐inspired sequence AQTPSSYGAP, derived from the mosquito Anopheles gambiae, have been used as tags on recombinant fusion proteins. These repeating polypeptides were inspired by the repeating structures that are found in resilins and sequence‐related proteins from various insects. Unexpectedly, an aqueous solution of a recombinant resilin protein displays an upper critical solution temperature (cold‐coacervation) when held on ice, leading to a separation into a protein rich phase, typically exceeding 200 mg/mL, and a protein‐poor phase. We show that purification of recombinant proteins by cold‐coacervation can be performed when engineered as a fusion partner to a resilin‐inspired repeat sequence. In this study, we demonstrate the process by the recombinant expression and purification of enhanced Green fluorescent protein (EGFP) in E. coli. This facile purification system can produce high purity, concentrated protein solutions without the need for affinity chromatography or other time‐consuming or expensive purification steps, and that it can be used with other bulk purification steps such as low concentration ammonium sulfate precipitation. Protein purification by cold‐coacervation also minimizes the exposure of the target protein to enhanced proteolysis at higher temperature. Biotechnol. Bioeng. 2012; 109: 2947–2954. © 2012 Wiley Periodicals, Inc.  相似文献   
164.
There are many large, easy‐to‐observe anseriform birds (ducks, geese, and swans) in northern Australia and New Guinea and they often gather in large numbers. Yet, the structure of their populations and their regional movements are poorly understood. Lack of understanding of population structure limits our capacity to understand source‐sink dynamics relevant to their conservation or assess risks associated with avian‐borne pathogens, in particular, avian influenza for which waterfowl are the main reservoir species. We set out to assess present‐day genetic connectivity between populations of two widely distributed waterfowl in the Australo‐Papuan tropics, magpie goose Anseranas semipalmata (Latham, 1798) and wandering whistling‐duck Dendrocygna arcuata (Horsfield, 1824). Microsatellite data were obtained from 237 magpie geese and 64 wandering whistling‐duck. Samples were collected across northern Australia, and at one site each in New Guinea and Timor Leste. In the wandering whistling‐duck, genetic diversity was significantly apportioned by region and sampling location. For this species, the best model of population structure was New Guinea as the source population for all other populations. One remarkable result for this species was genetic separation of two flocks sampled contemporaneously on Cape York Peninsula only a few kilometers apart. In contrast, evidence for population structure was much weaker in the magpie goose, and Cape York as the source population provided the best fit to the observed structure. The fine scale genetic structure observed in wandering whistling‐duck and magpie goose is consistent with earlier suggestions that the west‐coast of Cape York Peninsula is a flyway for Australo‐Papuan anseriforms between Australia and New Guinea across Torres Strait.  相似文献   
165.
Selective solubilization of Photosystem II membranes with the non-ionic detergent octyl thioglucopyranoside has allowed the isolation of a PS II system which has been depleted of the 22 and 10 kDa polypeptides but retains all three extrinsic proteins (33, 23 and 17 kDa). The PS II membranes which have been depleted of the 22 and 10 kDa species show high rates of oxygen evolution activity, external calcium is not required for activity and the manganese complex is not destroyed by exogenous reductants. When we compared this system to control PS II membranes, we observed a minor modification of the reducing side, and a conversion of the high-potential to the low-potential form of cytochrome b 559.Abbreviations Chl- chlorophyll - DCBQ- 2,5-dichloro-p-benzoquinone - DCMU- 3-(3,4-dichlorophenyl)-1,1-dimethylurea - ESR- electron spin resonance - MES- 2-(N-morpholino)ethanesulfonic acid - OTG- octyl--d-thioglucopyranoside - PS II- Photosystem II - PEG- polyethylene glycol, Mr=6000 - Tris- 2-amino-2-hydroxyethylpropane-1,3-diol  相似文献   
166.
Seagrass ecosystems have suffered significant declines globally and focus is shifting to restoration efforts. A key component to successful restoration is an understanding of the genetic factors potentially influencing restoration success. This includes understanding levels of connectivity between restoration locations and neighboring seagrass populations that promote natural recovery (source and sink populations), the identification of potential donor populations, and assessment of genetic diversity of restored meadows and material used for restoration. In this study, we carry out genetic surveys of 352 individuals from 13 populations using 11 polymorphic microsatellite loci to inform seagrass restoration activities by: (1) understanding levels of genetic and genotypic diversity within meadows; and (2) understanding genetic structure and patterns of connectivity among these meadows to determine which source sites may be most appropriate to assist recovery of three restoration sites. The study identified high genotypic diversity within the locations analyzed from the Port of Gladstone and Rodd's Bay region, indicating sexual reproduction is important in maintaining populations. Overall, we detected significant genetic structuring among sites with the Bayesian structure analysis identifying genetic clusters that largely conformed to a northern, central, and southern region. This suggests limited gene flow between regions, although there does appear to be some connectivity within regions. The hydrodynamic models showed that seeds were largely locally retained, while fragments were more widely dispersed. Limited gene flow between regions suggests donor material for restoration should be sourced locally where possible.  相似文献   
167.
The spiny damselfish, Acanthochromis polyacanthus, is widely distributed throughout the Indo‐Australian archipelago. However, this species lacks a larval dispersal stage and shows genetic differentiation between populations from closely spaced reefs. To investigate the dispersal strategy of this unique species, we used microsatellite markers to determine genetic relatedness at five dispersal scales: within broods of juveniles, between adults within a collection site (~30 m2), between sites on single reefs, between nearby reefs in a reef cluster, and between reef clusters. We sampled broods of juveniles and adults from seven reefs in the Capricorn‐Bunker and Swain groups of the Great Barrier Reef. We found that extra‐pair mating is rare and juveniles remain with their parents until fledged. Adults from single sites are less related than broods but more related than expected by chance. However, there is no evidence of inbreeding suggesting the existence of assortative mating and/or adult migration. Genetic differences were found between all of the reefs tested except between Heron and Sykes reefs, which are separated only by a 2‐km area of shallow water (less than 10 m). There was a strong correlation between genetic distance, geographical distance and water depth. Apparently, under present‐day conditions spiny damselfish populations are connected only between sites of shallow water, through dispersal of adults over short distances. Assuming that dispersal behaviour has not changed, the broad distribution of A. polyacanthus as a species is likely based on historical colonization patterns when reefs were connected by shallow water at times of lower sea levels.  相似文献   
168.
The ribulose-1,5-bisphosphate carboxylase/oxygenase purified from maize (a C4 monocot) to homogeneity has a MW of532 000 and sedimentation coeffici  相似文献   
169.
This paper advances an hypothesis that the primary adaptive driver of seasonal migration is maintenance of site fidelity to familiar breeding locations. We argue that seasonal migration is therefore principally an adaptation for geographic persistence when confronted with seasonality – analogous to hibernation, freeze tolerance, or other organismal adaptations to cyclically fluctuating environments. These ideas stand in contrast to traditional views that bird migration evolved as an adaptive dispersal strategy for exploiting new breeding areas and avoiding competitors. Our synthesis is supported by a large body of research on avian breeding biology that demonstrates the reproductive benefits of breeding‐site fidelity. Conceptualizing migration as an adaptation for persistence places new emphasis on understanding the evolutionary trade‐offs between migratory behaviour and other adaptations to fluctuating environments both within and across species. Seasonality‐induced departures from breeding areas, coupled with the reproductive benefits of maintaining breeding‐site fidelity, also provide a mechanism for explaining the evolution of migration that is agnostic to the geographic origin of migratory lineages (i.e. temperate or tropical). Thus, our framework reconciles much of the conflict in previous research on the historical biogeography of migratory species. Although migratory behaviour and geographic range change fluidly and rapidly in many populations, we argue that the loss of plasticity for migration via canalization is an overlooked aspect of the evolutionary dynamics of migration and helps explain the idiosyncratic distributions and migratory routes of long‐distance migrants. Our synthesis, which revolves around the insight that migratory organisms travel long distances simply to stay in the same place, provides a necessary evolutionary context for understanding historical biogeographic patterns in migratory lineages as well as the ecological dynamics of migratory connectivity between breeding and non‐breeding locations.  相似文献   
170.
In the Barwon River, Australia, a tidal barrage formed a major impediment to fish movement so in 2013 a vertical slot fishway was installed. The assessment of fishways on tidal barriers is rare in Australia so to ensure the fishway was achieving its ecological objective (i.e. successfully passing the target size range of fish of 20–400 mm total length), fish were trapped at the entrance and exit on 12 occasions and the species composition, abundance and length of fish at the two locations were compared. Additionally, a section of the river downstream of the fishway was sampled to ensure fishway trapping accurately reflected the species composition wanting to use the fishway to move upstream. Eighteen species and 69,246 individual fish were caught in the fishway traps. Catch rates between locations did not differ for Common Galaxias (Galaxias maculatus) or Australian Smelt (Retropinna semoni), although species‐specific catch rates were lower at the exit for Flat‐headed Gudgeon (Philypnodon grandiceps), Tupong (Pseudaphritis urvillii) and Yellow‐eye Mullet (Aldrichetta forsteri). Length distribution between locations only differed for Australian Smelt with small fish under‐represented at the exit location (<25 mm total length). Eight species of fish were collected downstream of the fishway that were not collected in it; however, all of these were estuarine dependent except the non‐native Common Carp (Cyprinus carpio). Our results indicate that vertical slot fishways are a suitable design for improving river connectivity at a low head, tidal barrages in south‐eastern Australia. The study reiterates the importance of reinstating connectivity for species with obligate marine/freshwater migratory life history traits, and the indirect benefits of increased productivity made available to upstream areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号