首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1171篇
  免费   315篇
  国内免费   26篇
  1512篇
  2024年   19篇
  2023年   17篇
  2022年   18篇
  2021年   19篇
  2020年   103篇
  2019年   76篇
  2018年   92篇
  2017年   75篇
  2016年   71篇
  2015年   83篇
  2014年   78篇
  2013年   121篇
  2012年   52篇
  2011年   99篇
  2010年   58篇
  2009年   83篇
  2008年   49篇
  2007年   53篇
  2006年   52篇
  2005年   41篇
  2004年   35篇
  2003年   22篇
  2002年   21篇
  2001年   23篇
  2000年   18篇
  1999年   20篇
  1998年   13篇
  1997年   6篇
  1996年   1篇
  1995年   12篇
  1994年   5篇
  1993年   8篇
  1992年   9篇
  1991年   9篇
  1990年   4篇
  1989年   4篇
  1987年   3篇
  1986年   2篇
  1985年   9篇
  1984年   5篇
  1983年   9篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有1512条查询结果,搜索用时 15 毫秒
81.
82.
Lithium–sulfur batteries (LSBs) are considered promising candidates for the next‐generation energy‐storage systems due to their high theoretical capacity and prevalent abundance of sulfur. Their reversible operation, however, encounters challenges from both the anode, where dendritic and dead Li‐metal form, and the cathode, where polysulfides dissolve and become parasitic shuttles. Both issues arise from the imperfection of interphases between electrolyte and electrode. Herein, a new lithium salt based on an imide anion with fluorination and unsaturation in its structure is reported, whose interphasial chemistries resolve these issues simultaneously. Lithium 1, 1, 2, 2, 3, 3‐hexafluoropropane‐1, 3‐disulfonimide (LiHFDF) forms highly fluorinated interphases at both anode and cathode surfaces, which effectively suppress formation of Li‐dendrites and dissolution/shuttling of polysulfides, and significantly improves the electrochemical reversibility of LSBs. In a broader context, this new Li salt offers a new perspective for diversified beyond Li‐ion chemistries that rely on a Li‐metal anode and active cathode materials.  相似文献   
83.
We explore the interrelation between density of states, recombination kinetics, and device performance in efficient poly[4,8‐bis‐(2‐ethylhexyloxy)‐benzo[1,2‐b:4,5‐b']dithiophene‐2,6‐diyl‐alt‐4‐(2‐ethylhexyloxy‐1‐one)thieno[3,4‐b]thiophene‐2,6‐diyl]:[6,6]‐phenyl‐C71‐butyric acid methyl ester (PBDTTT‐C:PC71BM) bulk‐heterojunction organic solar cells. We modulate the active‐layer density of states by varying the polymer:fullerene composition over a small range around the ratio that leads to the maximum solar cell efficiency (50–67 wt% PC71BM). Using transient and steady‐state techniques, we find that nongeminate recombination limits the device efficiency and, moreover, that increasing the PC71BM content simultaneously increases the carrier lifetime and drift mobility in contrast to the behavior expected for Langevin recombination. Changes in electronic properties with fullerene content are accompanied by a significant change in the magnitude or energetic separation of the density of localized states. Our comprehensive approach to understanding device performance represents significant progress in understanding what limits these high‐efficiency polymer:fullerene systems.  相似文献   
84.
Collagen, which is used as a biomaterial, is the most abundant protein in mammals. We have previously reported that a dendrimer modified with collagen model peptides, (Gly‐Pro‐Pro)5, formed a collagen‐like triple‐helical structure, showing thermal reversibility. In this study, various collagen‐mimic dendrimers of different generations and at different binding ratios were synthesized, to investigate the relationship between the peptide clustering effect and the higher order structure formation. The formation of the higher order structure was influenced by the binding ratios of the peptide to the dendrimer, but was not influenced by the dendrimer generation. A spacer, placed between the dendrimer terminal group and the peptide, negatively contributed to the formation of the higher order structure. The collagen model peptides were also attached to poly(allylamine) (PAA) and poly‐L ‐lysine (poly(Lys)) to compare them with the collagen‐mimic dendrimers. The PAA‐based collagen‐mimic compound, bearing more collagen model peptides than the dendrimer, exhibited a thermally stable higher order structure. In contrast, this was not observed for the collagen‐mimic polymers based on poly(Lys). Therefore, dendrimers and vinyl polymers act as a scaffold for collagen model peptides and subsequently induce higher order structures. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 640–648, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   
85.
Partitioning of a macromolecule into the interfacial volume occupied by a grafted polymer brush decreases the configurational entropy (DeltaSbrush(c)) of the terminally attached linear polymer chains due to a loss of free volume. Self-consistent field theory (SCF) calculations are used to show that DeltaSbrush(c) is a strong function of both the size (MWp) of the partitioning macromolecule and the depth of penetration into the brush volume. We further demonstrate that the strong dependence of DeltaSbrush(c) on MWp provides a novel and powerful platform, which we call entropic interaction chromatography (EIC), for efficiently separating mixtures of proteins on the basis of size. Two EIC columns, differing primarily in polymer grafting density, were prepared by growing a brush of poly(methoxyethyl acrylamide) chains on the surface of a wide-pore (1,000-A pores, 64-microm diameter rigid beads) resin (Toyopearl AF-650M) bearing surface aldehyde groups. Semipreparative 0.1-L columns packed with either EIC resin provide reduced-plate heights of 2 or less for efficient separation of globular protein mixtures over at least three molecular-weight decades. Protein partitioning within these wide-pore EIC columns is shown to be effectively modeled as a thermodynamically controlled process, allowing partition coefficients (K(P)) and elution chromatograms to be accurately predicted using a column model that combines SCF calculation of K(P) values with an equilibrium-dispersion type model of solute transport through the column. This model is used to explore the dependence of column separation efficiency on brush properties, predicting that optimal separation of proteins over a broad MWp range is achieved at low to moderate grafting densities and intermediate chain lengths.  相似文献   
86.
Molecular dynamics simulations and computational screening were used to identify functional monomers capable of interacting with rhodamine B (RhB). A library of 24 kinds of common functional monomers for preparing molecular imprinted polymer (MIP) was built and their interactions with RhB in acetonitrile were calculated using the molecular dynamics software (Gromacs 3.3). It was anticipated that the monomers giving the highest binding energy are suitable for preparing the affinity polymers. According to the theoretical calculation results, the MIP microspheres with RhB as template was prepared by reverse microemulsion polymerization method using acrylamide (AAm) as functional monomer and divinylbenzene as cross-linker in acetonitrile. Microspheres have been characterized by scanning electron microscopy (SEM). The proper adsorption and selective recognition ability of the MIP were studied by an equilibrium-adsorption method. The MIP showed outstanding affinity towards RhB in aqueous solution and the optimum pH value for binding has been found around neutral range. The molecular recognition of RhB was analyzed in detail by using molecular modeling software (Gaussian03). In addition, the MIP reusability without obviously deterioration in performance was demonstrated at least five repeated cycles.  相似文献   
87.
Three new metal pyridinecarboxylates, namely [Co2(pydc)2(H2O)5] (1), [Mn(pydc)(H2O)2] (2) and [Cd2(OH)2(2,4-pydc)] (3), were hydrothermally synthesized. X-ray single crystal structural analysis revealed: 1 and 2 have polymeric one-dimensional chain-like structure constructed by dinuclear cobalt units and Mn-O chains, respectively; 3 has a three-dimensional layer pillared structure constructed from inorganic Cd-O layer and pydc pillars. 1 shows antiferromagnetic interaction but 2 shows alternative antiferromagnetic and ferromagnetic interactions.  相似文献   
88.
Zhao Z  Wang C  Guo M  Shi L  Fan Y  Long Y  Mi H 《FEBS letters》2006,580(11):2750-2754
Here we describe a new method for preparing a protein-imprinted polymer with a cloned bacterial protein template, which recognizes/adsorbs authentic target protein present at a relatively low level in cell extract. In this work, cloned pig cyclophilin 18 (pCyP18) was used as a template. The template protein was selectively assembled with memory molecules from their library, which consists of numerous limited length polymer chains with randomly distributed recognition sites and immobilizing sites. These assemblies of protein and memory molecules were adsorbed by porous polymeric beads and immobilized by cross-linking polymerization. After removing the template, binding sites that were complementary to the target protein in size, shape and the position of recognition groups were exposed, and their confirmation was preserved by the cross-linked structure. The synthesized imprinted polymer was used to adsorb authentic pCyP18 from cell extract, and its proportional content was enriched 300 times.  相似文献   
89.
Lac repressor protein was purified from E. coli BMH8117 harboring plasmid pWB1000 and E. coli K12BMH 71-18 strains. Displacement of the protein with poly(ethyleneimine) (PEI) from phosphocellulose cation exchange column was shown to be an effective elution strategy. It resulted in better recoveries and sharper elution profiles than traditional salt elution without effecting the purity of the protein. The elution is assumed to proceed via displacement of bound protein by PEI when the polymer binds to the ion exchanger. The minor impurities in the protein solution were finally removed by chromatography on immobilized metal affinity column. The repressor protein undergoes distinct conformational changes upon addition of specific inducer isopropyl--D-thiogalactoside (IPTG), which is evidenced by changes in ultraviolet absorption spectrum. The protein was immobilized covalently to the Sepharose matrix. The intact biological activity of the protein after immobilization was shown by binding of genomic DNA and lac operator plasmid DNA from E. coli to the immobilized lac repressor.  相似文献   
90.
Two new 2D coordination polymers, [Ag4(μ-4,4′-bpp)3(1,3-bdc)2]n · 2nH2O (1) and [Ag(μ-4,4′-bpp)2ClO4]n(2) (4,4′-bpp = 2,2′-bis(4-pyridylmethyleneoxy)-1,1′-biphenylene; 1,3-bdc = 1,3-benzenedicarboxylate) have been synthesized using three-layer diffusion methods. Single-crystal X-ray analyses reveal that they are both extended grid networks of the (4,4) topology. In complex 1, a chain built by Ag(I) centers with T-shaped and linear geometries is further connected by the interesting ligand-unsupported Ag?Ag interactions as well as the conjugated π systems to form an interdigitated 2-D coordination network. The corrugated (4,4) sheets of 2 are packed in the ab planes and stacked along the c direction with the anions occupying the gaps in the squares.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号