全文获取类型
收费全文 | 1171篇 |
免费 | 315篇 |
国内免费 | 26篇 |
专业分类
1512篇 |
出版年
2024年 | 19篇 |
2023年 | 17篇 |
2022年 | 18篇 |
2021年 | 19篇 |
2020年 | 103篇 |
2019年 | 76篇 |
2018年 | 92篇 |
2017年 | 75篇 |
2016年 | 71篇 |
2015年 | 83篇 |
2014年 | 78篇 |
2013年 | 121篇 |
2012年 | 52篇 |
2011年 | 99篇 |
2010年 | 58篇 |
2009年 | 83篇 |
2008年 | 49篇 |
2007年 | 53篇 |
2006年 | 52篇 |
2005年 | 41篇 |
2004年 | 35篇 |
2003年 | 22篇 |
2002年 | 21篇 |
2001年 | 23篇 |
2000年 | 18篇 |
1999年 | 20篇 |
1998年 | 13篇 |
1997年 | 6篇 |
1996年 | 1篇 |
1995年 | 12篇 |
1994年 | 5篇 |
1993年 | 8篇 |
1992年 | 9篇 |
1991年 | 9篇 |
1990年 | 4篇 |
1989年 | 4篇 |
1987年 | 3篇 |
1986年 | 2篇 |
1985年 | 9篇 |
1984年 | 5篇 |
1983年 | 9篇 |
1982年 | 4篇 |
1981年 | 2篇 |
1980年 | 2篇 |
1979年 | 2篇 |
1978年 | 2篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
排序方式: 共有1512条查询结果,搜索用时 15 毫秒
51.
Reversible intercalation of potassium‐ion (K+) into graphite makes it a promising anode material for rechargeable potassium‐ion batteries (PIBs). However, the current graphite anodes in PIBs often suffer from poor cyclic stability with low coulombic efficiency. A stable solid electrolyte interphase (SEI) is necessary for stabilizing the large interlayer expansion during K+ insertion. Herein, a localized high‐concentration electrolyte (LHCE) is designed by adding a highly fluorinated ether into the concentrated potassium bis(fluorosulfonyl)imide/dimethoxyethane, which forms a durable SEI on the graphite surface and enables highly reversible K+ intercalation/deintercalation without solvent cointercalation. Furthermore, this LHCE shows a high ionic conductivity (13.6 mS cm?1) and excellent oxidation stability up to 5.3 V (vs K+/K), which enables compatibility with high‐voltage cathodes. The kinetics study reveals that K+ intercalation/deintercalation does not follow the same pathway. The potassiated graphite exhibits excellent depotassiation rate capability, while the formation of a low stage intercalation compound is the rate‐limiting step during potassiation. 相似文献
52.
Zachary M. Wilseck 《Inorganica chimica acta》2010,363(14):3865-279
Hydrothermal synthesis has afforded divalent copper coordination polymers containing bis(4-pyridylformyl)piperazine (4-bpfp) tethers and aromatic meta-dicarboxylate ligands. {[Cu(ip)(4-bpfp)]·2H2O}n (1, ip = isophthalate) possesses a (4, 4) rectangular grid structure with an unusual ABCD stacking pattern along a 41 screw axis. Sterically bulky substituents in the 5-position of the isophthalate ligands reduced the coordination polymer dimensionality, with [Cu2(tBuip)2(4-bpfp)(H2O)2]n (2, tBuip = 5-tert-butylisophthalate) and {[Cu(MeOip)(HMeOip)2(4-bpfp)]·3H2O}n (3, MeOip = 5-methoxyisophthalate) displaying 1D polymeric ladder and chain motifs, respectively. Compound 3 possesses a rare twofold interpenetrated binodal supramolecular hms net with (63)(698) topology. Longer meta-disposed acetate pendant arms induced a doubly interpenetrated 3D primitive cubic topology in {[Cu2(1,3-phda)2(H2O)2(4-bpfp)]}n (4, 1,3-phda = 1,3-phenylenediacetate), which possesses antiferromagnetically coupled {Cu2O2} kernels (J = −6.14(8) cm−1). 相似文献
53.
Piezoelectric poly(vinylidene fluoride) microstructure and poling state in active tissue engineering 下载免费PDF全文
Clarisse Ribeiro Daniela M. Correia Sylvie Ribeiro Vítor Sencadas Gabriela Botelho Senentxu Lanceros‐Méndez 《Engineering in Life Science》2015,15(4):351-356
Tissue engineering strategies rely on suitable membranes and scaffolds, providing the necessary physicochemical stimuli to specific cells. This review summarizes the main results on piezoelectric polymers, in particular poly(vinylidene fluoride), for muscle and bone cell culture. Further, the relevance of polymer microstructure and surface charge on cell response is demonstrated. Together with the necessary biochemical cues, the proper design of piezoelectric polymers can open the way to novel and more reliable tissue engineering strategies for cells in which electromechanical stimuli are present in their environment. 相似文献
54.
Synergistic Impact of Solvent and Polymer Additives on the Film Formation of Small Molecule Blend Films for Bulk Heterojunction Solar Cells 下载免费PDF全文
Caitlin McDowell Maged Abdelsamie Kui Zhao Detlef‐M. Smilgies Guillermo C. Bazan Aram Amassian 《Liver Transplantation》2015,5(18)
The addition of polystyrene (PS), a typical insulator, is empirically shown to increase the power conversion efficiencies (PCEs) of a solution‐deposited bulk heterojunction (BHJ) molecular blend film used in solar cell fabrication: p‐DTS(FBTTh2)2/PC71BM. The performance is further improved by small quantities of diiodooctane (DIO), an established solvent additive. In this study, how the addition of PS and DIO affects the film formation of this bulk heterojunction blend film are probed via in situ monitoring of absorbance, thickness, and crystallinity. PS and DIO additives are shown to promote donor crystallite formation on different time scales and through different mechanisms. PS‐containing films retain chlorobenzene solvent, extending evaporation time and promoting phase separation earlier in the casting process. This extended time is insufficient to attain the morphology for optimal PCE results before the film sets. Here is where the presence of DIO comes into play: its low vapor pressure further extends the time scale of film evolution and allows for crystalline rearrangement of the donor phase long after casting, ultimately leading to the best BHJ organization. 相似文献
55.
Hexagonal Boron Nitride‐Based Electrolyte Composite for Li‐Ion Battery Operation from Room Temperature to 150 °C 下载免费PDF全文
Marco‐Tulio F. Rodrigues Kaushik Kalaga Hemtej Gullapalli Ganguli Babu Arava Leela Mohana Reddy Pulickel M. Ajayan 《Liver Transplantation》2016,6(12)
Batteries for high temperature applications capable of withstanding over 60 °C are still dominated by primary cells. Conventional rechargeable energy storage technologies which have exceptional performance at ambient temperatures employ volatile electrolytes and soft separators, resulting in catastrophic failure under heat. A composite electrolyte/separator is reported that holds the key to extend the capability of Li‐ion batteries to high temperatures. A stoichiometric mixture of hexagonal boron nitride, piperidinium‐based ionic liquid, and a lithium salt is formulated, with ionic conductivity reaching 3 mS cm?1, electrochemical stability up to 5 V and extended thermal stability. The composite is used in combination with conventional electrodes and demonstrates to be stable for over 600 cycles at 120 °C, with a total capacity fade of less than 3%. The ease of formulation along with superior thermal and electrochemical stability of this system extends the use of Li‐ion chemistries to applications beyond consumer electronics and electric vehicles. 相似文献
56.
Iñigo Garbayo Michal Struzik William J. Bowman Reto Pfenninger Evelyn Stilp Jennifer L. M. Rupp 《Liver Transplantation》2018,8(12)
Ceramic Li7La3Zr2O12 garnet materials are promising candidates for the electrolytes in solid state batteries due to their high conductivity and structural stability. In this paper, the existence of “polyamorphism” leading to various glass‐type phases for Li‐garnet structure besides the known crystalline ceramic ones is demonstrated. A maximum in Li‐conductivity exists depending on a frozen thermodynamic glass state, as exemplified for thin film processing, for which the local near range order and bonding unit arrangement differ. Through processing temperature change, the crystallization and evolution through various amorphous and biphasic amorphous/crystalline phase states can be followed for constant Li‐total concentration up to fully crystalline nanostructures. These findings reveal that glass‐type thin film Li‐garnet conductors exist for which polyamorphism can be used to tune the Li‐conductivity being potential new solid state electrolyte phases to avoid Li‐dendrite formation (no grain boundaries) for future microbatteries and large‐scale solid state batteries. 相似文献
57.
Jabuticaba‐Inspired Hybrid Carbon Filler/Polymer Electrode for Use in Highly Stretchable Aqueous Li‐Ion Batteries 下载免费PDF全文
Woo‐Jin Song Jeonghwan Park Dong Hyup Kim Sohyun Bae Myung‐Jun Kwak Myoungsoo Shin Sungho Kim Sungho Choi Ji‐Hyun Jang Tae Joo Shin So Youn Kim Kwanyong Seo Soojin Park 《Liver Transplantation》2018,8(10)
Stretchable electronics are considered as next‐generation devices; however, to realize stretchable electronics, it is first necessary to develop a deformable energy device. Of the various components in energy devices, the fabrication of stretchable current collectors is crucial because they must be mechanically robust and have high electrical conductivity under deformation. In this study, the authors present a conductive polymer composite composed of Jabuticaba‐like hybrid carbon fillers containing carbon nanotubes and carbon black in a simple solution process. The hybrid carbon/polymer (HCP) composite is found to effectively retain its electrical conductivity, even when under high strain of ≈200%. To understand the behavior of conductive fillers in the polymer matrix when under mechanical strain, the authors investigate the microstructure of the composite using an in situ small‐angle X‐ray scattering analysis. The authors observe that the HCP produces efficient electrical pathways for filler interconnections upon stretching. The authors develop a stretchable aqueous rechargeable lithium‐ion battery (ARLB) that utilizes this HCP composite as a stretchable current collector. The ARLB exhibits excellent rate capability (≈90 mA h g?1 at a rate of 20 C) and outstanding capacity retention of 93% after 500 cycles. Moreover, the stretchable ARLB is able to efficiently deliver power even when under 100% strain. 相似文献
58.
Joonam Park Kyu Tae Kim Dae Yang Oh Dahee Jin Dohwan Kim Yoon Seok Jung Yong Min Lee 《Liver Transplantation》2020,10(35)
The digital twin technique has been broadly utilized to efficiently and effectively predict the performance and problems associated with real objects via a virtual replica. However, the digitalization of twin electrochemical systems has not been achieved thus far, owing to the large amount of required calculations of numerous and complex differential equations in multiple dimensions. Nevertheless, with the help of continuous progress in hardware and software technologies, the fabrication of a digital twin‐driven electrochemical system and its effective utilization have become a possibility. Herein, a digital twin‐driven all‐solid‐state battery with a solid sulfide electrolyte is built based on a voxel‐based microstructure. Its validity is verified using experimental data, such as effective electronic/ionic conductivities and electrochemical performance, for LiNi0.70Co0.15Mn0.15O2 composite electrodes employing Li6PS5Cl. The fundamental performance of the all‐solid‐state battery is scrutinized by analyzing simulated physical and electrochemical behaviors in terms of mass transport and interfacial electrochemical reaction kinetics. The digital twin model herein reveals valuable but experimentally inaccessible time‐ and space‐resolved information including dead particles, specific contact area, and charge distribution in the 3D domain. Thus, this new computational model is bound to rapidly improve the all‐solid‐state battery technology by saving the research resources and providing valuable insights. 相似文献
59.
Shafket Rasool Doan Van Vu Chang Eun Song Hang Ken Lee Sang Kyu Lee Jong‐Cheol Lee Sang‐Jin Moon Won Suk Shin 《Liver Transplantation》2019,9(21)
The room temperature (RT) processability of the photoactive layers in polymer solar cells (PSCs) from halogen‐free solvent along with their highly reproducible power conversion efficiencies (PCEs) and intrinsic thickness tolerance are extremely desirable for the large‐area roll‐to‐roll (R2R) production. However, most of the photoactive materials in PSCs require elevated processing temperatures due to their strong aggregation, which are unfavorable for the industrial R2R manufacturing of PSCs. These limiting factors for the commercialization of PSCs are alleviated by synthesizing random terpolymers with components of (2‐decyltetradecyl)thiophen‐2‐yl)naphtho[1,2‐c:5,6‐c′]bis[1,2,5]thiadiazole and bithiophene substituted with methyl thiophene‐3‐carboxylate (MTC). In contrast to the temperature‐dependent PNTz4T polymer, the resulting random terpolymers (PNTz4T‐MTC) show better solubility, slightly reduced crystallinity and aggregation, and weaker intermolecular interaction, thus enabling PNTz4T‐MTC to be processed at RT from a halogen‐free solvent. Particularly, the PNTz4T‐5MTC‐based photoactive layer exhibits an excellent PCE of 9.66%, which is among the highest reported PCEs for RT and ecofriendly halogen‐free solvent processed fullerene‐based PSCs, and a thickness tolerance with a PCE exceeding 8% from 100 to 520 nm. Finally, large‐area modules fabricated with the PNTz4T and PNTz4T‐5MTC polymer have shown 4.29% and 6.61% PCE respectively, with an area as high as 54.45 cm2 in air. 相似文献
60.
Thieno[3,4‐c]Pyrrole‐4,6‐Dione‐Based Polymer Acceptors for High Open‐Circuit Voltage All‐Polymer Solar Cells 下载免费PDF全文
Shengjian Liu Xin Song Simil Thomas Zhipeng Kan Federico Cruciani Frédéric Laquai Jean‐Luc Bredas Pierre M. Beaujuge 《Liver Transplantation》2017,7(15)
While polymer acceptors are promising fullerene alternatives in the fabrication of efficient bulk heterojunction (BHJ) solar cells, the range of efficient material systems relevant to the “all‐polymer” BHJ concept remains narrow, and currently limits the perspectives to meet the 10% efficiency threshold in all‐polymer solar cells. This report examines two polymer acceptor analogs composed of thieno[3,4‐c ]pyrrole‐4,6‐dione (TPD) and 3,4‐difluorothiophene ([2F]T) motifs, and their BHJ solar cell performance pattern with a low‐bandgap polymer donor commonly used with fullerenes (PBDT‐TS1; taken as a model system). In this material set, the introduction of a third electron‐deficient motif, namely 2,1,3‐benzothiadiazole (BT), is shown to (i) significantly narrow the optical gap (E opt) of the corresponding polymer (by ≈0.2 eV) and (ii) improve the electron mobility of the polymer by over two orders of magnitude in BHJ solar cells. In turn, the narrow‐gap P2TPDBT[2F]T analog (E opt = 1.7 eV) used as fullerene alternative yields high open‐circuit voltages (V OC) of ≈1.0 V, notable short‐circuit current values (J SC) of ≈11.0 mA cm−2, and power conversion efficiencies (PCEs) nearing 5% in all‐polymer BHJ solar cells. P2TPDBT[2F]T paves the way to a new, promising class of polymer acceptor candidates. 相似文献