首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1171篇
  免费   315篇
  国内免费   26篇
  1512篇
  2024年   19篇
  2023年   17篇
  2022年   18篇
  2021年   19篇
  2020年   103篇
  2019年   76篇
  2018年   92篇
  2017年   75篇
  2016年   71篇
  2015年   83篇
  2014年   78篇
  2013年   121篇
  2012年   52篇
  2011年   99篇
  2010年   58篇
  2009年   83篇
  2008年   49篇
  2007年   53篇
  2006年   52篇
  2005年   41篇
  2004年   35篇
  2003年   22篇
  2002年   21篇
  2001年   23篇
  2000年   18篇
  1999年   20篇
  1998年   13篇
  1997年   6篇
  1996年   1篇
  1995年   12篇
  1994年   5篇
  1993年   8篇
  1992年   9篇
  1991年   9篇
  1990年   4篇
  1989年   4篇
  1987年   3篇
  1986年   2篇
  1985年   9篇
  1984年   5篇
  1983年   9篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有1512条查询结果,搜索用时 15 毫秒
101.
Cyantraniliprole is one of the anthranilic diamide insecticides widely used in the agriculture sector. Due to its low toxicity and relatively fast degradation, there is need for a sensitive determination method for its residues. Nowadays, there is growing interest in the development of enzyme-based biosensors. The major drawback is the non-specific binding of many insecticides to the enzyme. This work employs Molecularly imprinted polymers (MIPs) to increase enzyme specificity and eliminate the organic solvent effect on the enzyme activity. The synthesized Cyan-Molecularly imprinted polymers (Cyan-MIP) possesses high affinity and selectivity toward cyantraniliprole. Acetylcholinesterase assay characteristics including enzyme concentration, substrate concentration, DTNB concentration, and acetonitrile concentration were optimized. Under optimal experimental conditions, the developed MIP-Acetylcholinesterase (MIP-AchE) inhibition-based sensor provides better precision than the AchE inhibition-based sensor with a wide linear range (15–50 ppm), limit of detection (LOD) 4.1 ppm, and limit of quantitation (LOQ) 12.6 ppm. The sensor was successfully applied for cyantraniliprole determination in spiked melon, giving satisfactory recoveries.  相似文献   
102.
Cell microencapsulation is a more widely accepted area of biological encapsulation. In most cases, it involves fixing cells in polymer scaffolds or semi-permeable hydrogel capsules, providing the environment for protecting cells, allowing the exchange of nutrients and oxygen, and protecting cells against the attack of the host immune system by preventing the entry of antibodies and cytotoxic immune cells. Hydrogel encapsulation provides a three-dimensional (3D) environment similar to that experienced in vivo, so it can maintain normal cellular functions to produce tissues similar to those in vivo. Embedded cells can be genetically modified to release specific therapeutic products directly at the target site, thereby eliminating the side effects of systemic treatments. Cellular microcarriers need to meet many extremely high standards regarding their biocompatibility, cytocompatibility, immunoseparation capacity, transport, mechanical, and chemical properties. In this article, we discuss the biopolymer gels used in tissue engineering applications and the brief introduction of cell encapsulation for therapeutic protein production. Also, we review polymer biomaterials and methods for preparing cell microcarriers for biomedical applications. At the same time, in order to improve the application performance of cell microcarriers in vivo, we also summarize the main limitations and improvement strategies of cell encapsulation. Finally, the main applications of polymer cell microcarriers in regenerative medicine are summarized.  相似文献   
103.
Fluorine‐based additives have a tremendously beneficial effect on the performance of lithium‐ion batteries, yet the origin of this phenomenon is unclear. This paper shows that the formation of a solid‐electrolyte interphase (SEI) on the anode surface in the first five charge/discharge cycles is affected by the stereochemistry of the electrolyte molecules on the anode surface starting at open‐circuit potential (OCP). This study shows an anode‐specific model system, the reduction of 1,2‐diethoxy ethane with lithium bis(trifluoromethane)sulfonimide, as a salt on an amorphous silicon anode, and compares the electrochemical response and SEI formation to its fluorinated version, bis(2,2,2‐trifluoroethoxy) ethane (BTFEOE), by sum frequency generation (SFG) vibrational spectroscopy under reaction conditions. The SFG results suggest that the ? CF3 end‐groups of the linear ether BTFEOE change their adsorption orientation on the a‐Si surface at OCP, leading to a better protective layer. Supporting evidence from ex situ scanning electron microscopy and X‐ray photoelectron spectroscopy depth profiling measurements shows that the fluorinated ether, BTFEOE, yields a smooth SEI on the a‐Si surface and enables lithium ions to intercalate deeper into the a‐Si bulk.  相似文献   
104.
Agricultural fields are an important anthropogenic source of atmospheric nitrous oxide (N2O) and nitric oxide (NO). Although many field studies have tested the effectiveness of possible mitigation options on N2O and NO emissions, the effectiveness of each option varies across sites due to environmental factors and field management. To combine these results and evaluate the overall effectiveness of enhanced‐efficiency fertilizers [i.e., nitrification inhibitors (NIs), polymer‐coated fertilizers (PCFs), and urease inhibitors (UIs)] on N2O and NO emissions, we performed a meta‐analysis using field experiment data (113 datasets from 35 studies) published in peer‐reviewed journals through 2008. The results indicated that NIs significantly reduced N2O emissions (mean: ?38%, 95% confidential interval: ?44% to ?31%) compared with those of conventional fertilizers. PCFs also significantly reduced N2O emissions (?35%, ?58% to ?14%), whereas UIs were not effective in reducing N2O. NIs and PCFs also significantly reduced NO (?46%, ?65% to ?35%; ?40%, ?76% to ?10%, respectively). The effectiveness of NIs was relatively consistent across the various types of inhibitors and land uses. However, the effect of PCFs showed contrasting results across soil and land‐use type: they were significantly effective for imperfectly drained Gleysol grassland (?77%, ?88% to ?58%), but were ineffective for well‐drained Andosol upland fields. Because available data for PCFs were dominated by certain regions and soil types, additional data are needed to evaluate their effectiveness more reliably. NIs were effective in reducing N2O emission from both chemical and organic fertilizers. Moreover, the consistent effect of NIs indicates that they are potent mitigation options for N2O and NO emissions.  相似文献   
105.
New peptides-9-aminoacridine conjugates with an ethylene diamine linker-have been synthesized (both solution and solid phase methods were used) and their interactions with DNA have been studied. The affinity of H-Phe-Gln-Gly-Ile(2)-NHCH(2)CH(2)NH-Acr conjugate and of its extended analogue containing 6-aminohexanoic acid to DNA were lower than that of a standard H-Gly-NHCH(2)CH(2)NH-Acr conjugate. The results fit well into our concept of peptide conjugates with lowered binding activity to DNA, which could be capable of unlimited extravascular distribution. Moreover, new structures could be potentially useful as the mild tuners of DNA interaction with strong bis-acridine binders.  相似文献   
106.
Semi-interpenetrating polymer network (IPN) microspheres of acrylamide grafted on dextran (AAm-g-Dex) and chitosan (CS) were prepared by emulsion-crosslinking method using glutaraldehyde (GA) as a crosslinker. The grafting efficiency was found to be 94%. Acyclovir, an antiviral drug with limited water solubility, was successfully encapsulated into IPN microspheres by varying the ratio of AAm-g-Dex and CS, % drug loading and amount of GA. Microspheres were characterized by FT-IR spectroscopy to assess the formation of IPN structure and to confirm the absence of chemical interactions between drug, polymer and crosslinking agent. Particle size was measured using laser light scattering technique. Microspheres with average particle sizes in the range of 265–388 μm were obtained. Differential scanning calorimetry (DSC) and X-ray diffraction (X-RD) studies were performed to understand the crystalline nature of drug after encapsulation into IPN microspheres. Acyclovir encapsulation of up to 79.6% was achieved as measured by UV spectroscopy. Both equilibrium and dynamic swelling studies were performed in 0.1 N HCl. Diffusion coefficients (D) and diffusional exponents (n) for water transport were determined using an empirical equation. In vitro release studies indicated the dependence of drug release rates on both the extent of crosslinking and amount of AAm-g-Dex used in preparing microspheres; the slow release was extended up to 12 h. The release rates were fitted to an empirical equation to compute the diffusional exponent (n), which indicated non-Fickian trend for the release of acyclovir.  相似文献   
107.
Two isothiocyanate coordination polymers constructed from the conformationally flexible tethering ligand 3,3′-bipyridine (3,3′-bpy) and divalent metal cations have been prepared and characterized via single crystal X-ray diffraction, infrared spectroscopy and elemental analysis. [Co(NCS)2(3,3′-bpy)2] (1), wherein the isothiocyanate ligands are coordinated in a trans fashion, manifests stacked two-dimensional (2-D) rhomboid grid layered motifs. In contrast, [Ni(NCS)2(3,3′-bpy)2] (2) possesses a doubly interpenetrated adamantoid three-dimensional (3-D) network despite the presence of trans isothiocyanate ligands. Thus, a metal cation-based control of coordination polymer dimensionality has been revealed in this system, reflective of different donor dispositions allowed by the conformational flexibility of the exobidentate 3,3′-bpy ligand. The 3-D framework of 2 decomposes at a temperature ∼40 °C higher than the 2-D network of 1.  相似文献   
108.
Two new 2D coordination polymers, [Ag4(μ-4,4′-bpp)3(1,3-bdc)2]n · 2nH2O (1) and [Ag(μ-4,4′-bpp)2ClO4]n(2) (4,4′-bpp = 2,2′-bis(4-pyridylmethyleneoxy)-1,1′-biphenylene; 1,3-bdc = 1,3-benzenedicarboxylate) have been synthesized using three-layer diffusion methods. Single-crystal X-ray analyses reveal that they are both extended grid networks of the (4,4) topology. In complex 1, a chain built by Ag(I) centers with T-shaped and linear geometries is further connected by the interesting ligand-unsupported Ag?Ag interactions as well as the conjugated π systems to form an interdigitated 2-D coordination network. The corrugated (4,4) sheets of 2 are packed in the ab planes and stacked along the c direction with the anions occupying the gaps in the squares.  相似文献   
109.
A new lanthanum ethylenediaminetetraacetate (EDTA) coordination polymer, {[La(EDTA)(H2O)]2}n (EDTA3− = [(CH2N)2(CH2COOH)(CH2COO)3]), was hydrothermally prepared from LaCl3 solution and ethylenediaminetetracetic acid at 448 K. The compound was characterized by elemental analysis, FTIR, TG-DTA, and X-ray crystallography. The structure consists of ladder-like chains of [La(EDTA)(H2O)]2 dimers bridged by O-C-O groups. Hydrothermal method successfully reduced the high number of La-aqua coordinations in known lanthanum EDTA to one giving rise to relatively compact structure. It has high thermal stability up to 550 K. Every EDTA ligand with COOH group is involved in eight La-O(N) bonds to three nine-coordinated La centers.  相似文献   
110.
A new dimeric silver(I) complex [Ag(PhPPy2)(CH3CN)]2(ClO4)2 (1) (PhPPy2 = bis(2-pyridyl)phenylphosphine) was synthesized by a direct reaction of [Ag(CH3CN)4]ClO4 with ligand PhPPy2. X-ray crystallographical studies revealed that in 1, two silver atoms are bridged by two PhPPy2 ligands and bonded to each other. Each Ag(I) adopts a distorted trigonally bi-pyramidal geometry, and axially coordinated acetonitrile molecules are collinear with two silver atoms. By using 1 as a building block precursor, a 1D coordination polymer, [Ag2(PhPPy2)2(1,3,5-C6H3(CO2)2(CO2H))] (2) was prepared by replacing axially coordinated acetonitrile molecules in 1 with two carboxylate groups of a bridging ligand, 1,3,5-benzenetricarboxylate. In solid state, linear polymeric chains are oriented parallel to each other and interestingly interact by hydrogen bonding through their carboxylic/carboxylate groups to construct a novel wave-shaped 2D network. Both 1 and 2 exhibit similar photoluminescent properties in solid state at room temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号