首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1112篇
  免费   67篇
  国内免费   69篇
  2023年   23篇
  2022年   27篇
  2021年   37篇
  2020年   41篇
  2019年   36篇
  2018年   30篇
  2017年   21篇
  2016年   30篇
  2015年   40篇
  2014年   55篇
  2013年   47篇
  2012年   51篇
  2011年   34篇
  2010年   23篇
  2009年   26篇
  2008年   44篇
  2007年   40篇
  2006年   38篇
  2005年   47篇
  2004年   36篇
  2003年   36篇
  2002年   33篇
  2001年   49篇
  2000年   39篇
  1999年   22篇
  1998年   33篇
  1997年   24篇
  1996年   34篇
  1995年   26篇
  1994年   23篇
  1993年   20篇
  1992年   31篇
  1991年   16篇
  1990年   24篇
  1989年   13篇
  1988年   17篇
  1987年   10篇
  1986年   12篇
  1985年   6篇
  1984年   12篇
  1983年   4篇
  1982年   7篇
  1981年   9篇
  1980年   7篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1975年   1篇
  1974年   3篇
  1972年   1篇
排序方式: 共有1248条查询结果,搜索用时 31 毫秒
61.
62.
63.
64.
65.
[PSI+] turns 50     
《朊病毒》2013,7(5):318-332
abstract

The year 2015 sees the fiftieth anniversary of the publication of a research paper that underpins much of our understanding of fungal prion biology, namely “ψ, a cytoplasmic suppressor of super-suppressor in yeast” by Brian Cox. Here we show how our understanding of the molecular nature of the [PSI+] determinant evolved from an ‘occult’ determinant to a transmissible amyloid form of a translation termination factor. We also consider the impact studies on [PSI] have had – and continue to have - on prion research. To demonstrate this, leading investigators in the yeast prion field who have made extensive use of the [PSI+] trait in their research, provide their own commentaries on the discovery and significance of [PSI].  相似文献   
66.
Maternal inheritance of mitochondrial DNA (mtDNA) is generally observed in many eukaryotes. Sperm-derived paternal mitochondria and their mtDNA enter the oocyte cytoplasm upon fertilization and then normally disappear during early embryogenesis. However, the mechanism underlying this clearance of paternal mitochondria has remained largely unknown. Recently, we showed that autophagy is required for the elimination of paternal mitochondria in Caenorhabditis elegans embryos. Shortly after fertilization, autophagosomes are induced locally around the penetrated sperm components. These autophagosomes engulf paternal mitochondria, resulting in their lysosomal degradation during early embryogenesis. In autophagy-defective zygotes, paternal mitochondria and their genomes remain even in the larval stage. Therefore, maternal inheritance of mtDNA is accomplished by autophagic degradation of paternal mitochondria. We also found that another kind of sperm-derived structure, called the membranous organelle, is degraded by zygotic autophagy as well. We thus propose to term this allogeneic (nonself) organelle autophagy as allophagy.  相似文献   
67.
Phenotypes respond to environments experienced directly by an individual, via phenotypic plasticity, or to the environment experienced by ancestors, via transgenerational environmental effects. The adaptive value of environmental effects depends not only on the strength and direction of the induced response but also on how long the response persists within and across generations, and how stably it is expressed across environments that are encountered subsequently. Little is known about the genetic basis of those distinct components, or even whether they exhibit genetic variation. We tested for genetic differences in the inducibility, temporal persistence, and environmental stability of transgenerational environmental effects in Arabidopsis thaliana. Genetic variation existed in the inducibility of transgenerational effects on traits expressed across the life cycle. Surprisingly, the persistence of transgenerational effects into the third generation was uncorrelated with their induction in the second generation. Although environmental effects for some traits in some genotypes weakened over successive generations, others were stronger or even in the opposite direction in more distant generations. Therefore, transgenerational effects in more distant generations are not merely caused by the retention or dissipation of those expressed in prior generations, but they may be genetically independent traits with the potential to evolve independently.  相似文献   
68.
Two single nucleotide polymorphisms (SNPs) in the Human Hemochromatosis (HFE) gene, C282Y and H63D, are the major variants associated to altered iron status and it is well known that these mutations are in linkage disequilibrium with certain Human Leukocyte Antigen (HLA)-A alleles. In addition, the C282Y SNP has been previously suggested to confer susceptibility to acute lymphoblastic leukemia (ALL). We have aimed to assess the diagnosis utility of these polymorphisms in a population of Spanish subjects with suspicion of hereditary iron overload and to evaluate the effect of their associations with HLA-A alleles on the susceptibility to ALL. Both the 63DD [OR = 4.31 (1.7–11.2)] and 282YY (p for trend = 0.02) genotypes were more frequently found among subjects with suspicion of iron overload than among controls. 282YY carriers displayed significantly higher transferrin saturation index (TSI) values (p < 0.001) as well as serum iron (p = 0.01) and ferritin (p = 0.01) levels. In addition, transferrin levels were lower in these subjects (p = 0.01). Likewise, patients who were carriers of the compound heterozygous diplotype (282CY/63HD) showed significantly higher TSI and serum iron and ferritin concentrations. The H63D SNP did not significantly affect the analytical parameters measured. All 282YY carriers and 69.2% of compound heterozygotes showed an altered biochemical index. The frequencies of the HFE SNPs in ALL pediatric patients were lower than those found in controls, whereas the HLA-A*24 allele was significantly overrepresented in the patients group [OR = 3.76 (1.9–7.3)]. No HFE-HLA-A associations were found to modulate the ALL risk. These results suggest that it may be useful to test for both HFE H63D and C282Y polymorphisms in patients with iron overload, as opposed to just genotyping for the C282Y SNP, which is customary in some healthcare centers. These HFE variants and their associations with HLA-A alleles were not observed to be relevant for the susceptibility to ALL in our population.  相似文献   
69.
Sandhoff disease (SD) is an autosomal recessive lysosomal storage disease caused by mutations in the HEXB gene encoding the beta subunit of hexosaminidases A and B, two enzymes involved in GM2 ganglioside degradation. Eleven French Sandhoff patients with infantile or juvenile forms of the disease were completely characterized using sequencing of the HEXB gene. A specific procedure was developed to facilitate the detection of the common 5′-end 16 kb deletion which was frequent (36% of the alleles) in our study. Eleven other disease-causing mutations were found, among which four have previously been reported (c.850C>T, c.793T>G, c.115del and c.800_817del). Seven mutations were completely novel and were analyzed using molecular modelling. Two deletions (c.176del and c.1058_1060del), a duplication (c.1485_1487dup) and a nonsense mutation (c.552T>G) were predicted to strongly alter the enzyme spatial organization. The splice mutation c.558+5G>A affecting the intron 4 consensus splice site led to a skipping of exon 4 and to a truncated protein (p.191X). Two missense mutations were found among the patients studied. The c.448A>C mutation was probably a severe mutation as it was present in association with the known c.793T>G in an infantile form of Sandhoff disease and as it significantly modified the N-terminal domain structure of the protein. The c.171G>C mutation resulting in a p.W57C amino acid substitution in the N-terminal region is probably less drastic than the other abnormalities as it was present in a juvenile patient in association with the c.176del. Finally, this study reports a rapid detection of the Sandhoff disease-causing alleles facilitating genetic counselling and prenatal diagnosis in at-risk families.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号