首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   798篇
  免费   20篇
  国内免费   25篇
  2023年   11篇
  2022年   8篇
  2021年   11篇
  2020年   6篇
  2019年   17篇
  2018年   25篇
  2017年   8篇
  2016年   9篇
  2015年   6篇
  2014年   54篇
  2013年   71篇
  2012年   22篇
  2011年   65篇
  2010年   68篇
  2009年   78篇
  2008年   63篇
  2007年   44篇
  2006年   26篇
  2005年   22篇
  2004年   11篇
  2003年   8篇
  2002年   13篇
  2001年   16篇
  2000年   8篇
  1999年   5篇
  1998年   7篇
  1997年   4篇
  1996年   7篇
  1995年   11篇
  1994年   2篇
  1993年   7篇
  1992年   11篇
  1991年   12篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   5篇
  1985年   22篇
  1984年   15篇
  1983年   6篇
  1982年   12篇
  1981年   6篇
  1980年   10篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有843条查询结果,搜索用时 15 毫秒
81.
The native serpin state is kinetically trapped. However, under mildly destabilizing conditions, the conformational landscape changes, and a number of nonnative conformations with increased stability can be readily formed. The ability to undergo structural change is due to intrinsic strain within the serpin's tertiary fold, which is utilized for proteinase inhibition but renders the protein susceptible to aberrant folding and self-association. The relationship between these various conformations is poorly understood. Antichymotrypsin (ACT) is an inhibitory serpin that readily forms a number of inactive conformations, induced via either environmental stress or interaction with proteinases. Here we have used a variety of biophysical and structural techniques to characterize the relationship between some of these conformations. Incubation of ACT at physiological temperature results in the formation of a range of conformations, including both polymer and misfolded monomer. The ability to populate these nonnative states and the native conformation reflects an energy landscape that is very sensitive to the solution conditions. X-ray crystallography reveals that the misfolded monomeric conformation is in the delta conformation. Further polymerization and seeding experiments show that the delta conformation is an end point in the misfolding pathway of ACT and not an on-pathway intermediate formed during polymerization. The observation that ACT readily forms this inactive conformation at physiological temperature and pH suggests that it may have a role in both health and disease.  相似文献   
82.
Microcrystalline uniformly 13C,15N-enriched yeast triosephosphate isomerase (TIM) is sequentially assigned by high-resolution solid-state NMR (SSNMR). Assignments are based on intraresidue and interresidue correlations, using dipolar polarization transfer methods, and guided by solution NMR assignments of the same protein. We obtained information on most of the active-site residues involved in chemistry, including some that were not reported in a previous solution NMR study, such as the side-chain carbons of His95. Chemical shift differences comparing the microcrystalline environment to the aqueous environment appear to be mainly due to crystal packing interactions. Site-specific perturbations of the enzyme's chemical shifts upon ligand binding are studied by SSNMR for the first time. These changes monitor proteinwide conformational adjustment upon ligand binding, including many of the sites probed by solution NMR and X-ray studies. Changes in Gln119, Ala163, and Gly210 were observed in our SSNMR studies, but were not reported in solution NMR studies (chicken or yeast). These studies identify a number of new sites with particularly clear markers for ligand binding, paving the way for future studies of triosephosphate isomerase dynamics and mechanism.  相似文献   
83.
In the N2 domain of the gene-3-protein of phage fd, two consecutive β-strands are connected by a mobile loop of seven residues (157-163). The stability of this loop is low, and the Asp160-Pro161 bond at its tip shows conformational heterogeneity with 90% being in the cis and 10% in the trans form. The refolding kinetics of N2 are complex because the molecules with cis or trans isomers at Pro161 both fold to native-like conformations, albeit with different rates. We employed consensus design to shorten the seven-residue irregular loop around Pro161 to a four-residue type I′ turn without a proline. This increased the conformational stability of N2 by almost 10 kJ mol− 1 and abolished the complexity of the folding kinetics. Turn sequences obtained from in vitro selections for increased stability strongly resembled those derived from the consensus design. Two other type I′ turns of N2 could also be stabilized by consensus design. For all three turns, the gain in stability originates from an increase in the rate of refolding. The turns form native-like structures early during refolding and thus stabilize the folding transition state. The crystal structure of the variant with all three stabilized turns confirms that the 157-163 loop was in fact shortened to a type I′ turn and that the other turns maintained their type I′ conformation after sequence optimization.  相似文献   
84.
RNA helicases of the DExD/H-box superfamily are critically involved in all RNA-related processes. No crystal structures of human DExH-box domains had been determined previously, and their structures were difficult to predict owing to the low level of homology among DExH-motif-containing proteins from diverse species. Here we present the crystal structures of the conserved domain 1 of the DEIH-motif-containing helicase DHX9 and of the DEAD-box helicase DDX20. Both contain a RecA-like core, but DHX9 differs from DEAD-box proteins in the arrangement of secondary structural elements and is more similar to viral helicases such as NS3. The N-terminus of the DHX9 core contains two long α-helices that reside on the surface of the core without contributing to nucleotide binding. The RNA-polymerase-II-interacting minimal transactivation domain sequence forms an extended loop structure that resides in a hydrophobic groove on the surface of the DEIH domain. DHX9 lacks base-selective contacts and forms an unspecific but important stacking interaction with the base of the bound nucleotide, and our biochemical analysis confirms that the protein can hydrolyze ATP, guanosine 5′-triphosphate, cytidine 5′-triphosphate, and uridine 5′-triphosphate. Together, these findings allow the localization of functional motifs within the three-dimensional structure of a human DEIH helicase and show how these enzymes can bind nucleotide with high affinity in the absence of a Q-motif.  相似文献   
85.
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with several serious diseases, such as adult T-cell leukemia and tropical spastic paraparesis/myelopathy. For a number of years, the protease (PR) encoded by HTLV-1 has been a target for designing antiviral drugs, but that effort was hampered by limited available structural information. We report a high-resolution crystal structure of HTLV-1 PR complexed with a statine-containing inhibitor, a significant improvement over the previously available moderate-resolution structure. We also report crystal structures of the complexes of HTLV-1 PR with five different inhibitors that are more compact and more potent. A detailed study of structure-activity relationships was performed to interpret in detail the influence of the polar and hydrophobic interactions between the inhibitors and the protease.  相似文献   
86.
The ΔF508 mutation in nucleotide-binding domain 1 (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) is the predominant cause of cystic fibrosis. Previous biophysical studies on human F508 and ΔF508 domains showed only local structural changes restricted to residues 509-511 and only minor differences in folding rate and stability. These results were remarkable because ΔF508 was widely assumed to perturb domain folding based on the fact that it prevents trafficking of CFTR out of the endoplasmic reticulum. However, the previously reported crystal structures did not come from matched F508 and ΔF508 constructs, and the ΔF508 structure contained additional mutations that were required to obtain sufficient protein solubility. In this article, we present additional biophysical studies of NBD1 designed to address these ambiguities. Mass spectral measurements of backbone amide 1H/2H exchange rates in matched F508 and ΔF508 constructs reveal that ΔF508 increases backbone dynamics at residues 509-511 and the adjacent protein segments but not elsewhere in NBD1. These measurements also confirm a high level of flexibility in the protein segments exhibiting variable conformations in the crystal structures. We additionally present crystal structures of a broader set of human NBD1 constructs, including one harboring the native F508 residue and others harboring the ΔF508 mutation in the presence of fewer and different solubilizing mutations. The only consistent conformational difference is observed at residues 509-511. The side chain of residue V510 in this loop is mostly buried in all non-ΔF508 structures but completely solvent exposed in all ΔF508 structures. These results reinforce the importance of the perturbation ΔF508 causes in the surface topography of NBD1 in a region likely to mediate contact with the transmembrane domains of CFTR. However, they also suggest that increased exposure of the 509-511 loop and increased dynamics in its vicinity could promote aggregation in vitro and aberrant intermolecular interactions that impede trafficking in vivo.  相似文献   
87.
We have determined high-resolution apo crystal structures of two low molecular weight penicillin-binding proteins (PBPs), PBP4 and PBP5, from Haemophilus influenzae, one of the most frequently found pathogens in the upper respiratory tract of children. Novel β-lactams with notable antimicrobial activity have been designed, and crystal structures of PBP4 complexed with ampicillin and two of the novel molecules have also been determined. Comparing the apo form with those of the complexes, we find that the drugs disturb the PBP4 structure and weaken X-ray diffraction, to very different extents. PBP4 has recently been shown to act as a sensor of the presence of penicillins in Pseudomonas aeruginosa, and our models offer a clue to the structural basis for this effect. Covalently attached penicillins press against a phenylalanine residue near the active site and disturb the deacylation step. The ready inhibition of PBP4 by β-lactams compared to PBP5 also appears to be related to the weaker interactions holding key residues in a catalytically competent position.  相似文献   
88.
The crystal structure of Bifidobacterium longum phosphoketolase, a thiamine diphosphate (TPP) dependent enzyme, has been determined at 2.2 Å resolution. The enzyme is a dimer with the active sites located at the interface between the two identical subunits with molecular mass of 92.5 kDa. The bound TPP is almost completely shielded from solvent except for the catalytically important C2-carbon of the thiazolium ring, which can be accessed by a substrate sugar through a narrow funnel-shaped channel. In silico docking studies of B. longum phosphoketolase with its substrate enable us to propose a model for substrate binding.

Structured summary

MINT-7985878: PKT (uniprotkb:Q6R2Q7) and PKT (uniprotkb:Q6R2Q7) bind (MI:0407) by X-ray crystallography (MI:0114)  相似文献   
89.
Saccharophagus degradans belongs to a recently discovered group of marine bacteria equipped with an arsenal of sugar cleaving enzymes coupled to carbohydrate-binding domains to degrade various insoluble complex polysaccharides. The modular Sde-1182 protein consists of a family 2 carbohydrate binding module linked to a X158 domain of unknown function. The 1.9 Å and 1.55 Å resolution crystal structures of the isolated X158 domain bound to the two related polyisoprenoid molecules, ubiquinone and octaprenyl pyrophosphate, unveil a β-barrel architecture reminiscent of the YceI-like superfamily that resembles the architecture of the lipocalin fold. This unprecedented association coupling oxidoreduction and carbohydrate recognition events may have implications for effective nutrient uptake in the marine environment.  相似文献   
90.
Bio-nanocapsules (BNCs) are hollow nanoparticles composed of the L protein of hepatitis B virus (HBV) surface antigen (HBsAg), which can specifically introduce genes and drugs into various kinds of target cells. Although the classic electroporation method has typically been used to introduce highly charged molecules such as DNA, it is rarely adopted for proteins due to its very low efficiency. In this study, a novel approach to the preparation of BNC was established whereby a target protein was pre-encapsulated during the course of nanoparticle formation. Briefly, because of the process of BNC formation in a budding manner on the endoplasmic reticulum (ER) membrane, the association of target proteins to the ER membrane with lipidation sequences (ER membrane localization sequences) could directly generate protein-encapsulating BNC in collaboration with co-expression of the L proteins. Since the membrane-localized proteins are automatically enveloped into BNCs during the budding event, this method can be protect the proteins and BNCs from damage caused by electroporation and obviate the need for laborious consideration to study the optimal conditions for protein encapsulation. This approach would be a useful method for encapsulating therapeutic candidate proteins into BNCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号