首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227篇
  免费   9篇
  国内免费   4篇
  240篇
  2023年   8篇
  2022年   7篇
  2021年   4篇
  2020年   4篇
  2019年   2篇
  2018年   10篇
  2017年   8篇
  2016年   6篇
  2015年   3篇
  2014年   7篇
  2013年   80篇
  2012年   2篇
  2011年   7篇
  2010年   4篇
  2009年   8篇
  2008年   8篇
  2007年   5篇
  2006年   12篇
  2005年   3篇
  2004年   8篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   8篇
  1999年   2篇
  1998年   1篇
  1996年   4篇
  1995年   1篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
排序方式: 共有240条查询结果,搜索用时 9 毫秒
91.
92.
93.
94.
It has been hypothesized that in ancient apomictic, nonrecombining lineages the two alleles of a single copy gene will become highly divergent as a result of the independent accumulation of mutations (Meselson effect). We used a partial sequence of the elongation factor-1alpha (ef-1alpha) and the heat shock protein 82 (hsp82) genes to test this hypothesis for putative ancient parthenogenetic oribatid mite lineages. In addition, we tested if the hsp82 gene is fully transcribed by sequencing the cDNA and we also tested if there is evidence for recombination and gene conversion in sexual and parthenogenetic oribatid mite species. The average maximum intra-specific divergence in the ef-1alpha was 2.7% in three parthenogenetic species and 8.6% in three sexual species; the average maximum intra-individual genetic divergence was 0.9% in the parthenogenetic and 6.0% in the sexual species. In the hsp82 gene the average maximum intra-individual genetic divergence in the sexual species Steganacarus magnus and in the parthenogenetic species Platynothrus peltifer was 1.1% and 1.2%, respectively. None of the differences were statistically significant. The cDNA data indicated that the hsp82 sequence is transcribed and intron-free. Likelihood permutation tests indicate that ef-1alpha has undergone recombination in all three studied sexual species and gene conversion in two of the sexual species, but neither process has occurred in any of the parthenogenetic species. No evidence for recombination or gene conversion was found for sexual or parthenogenetic oribatid mite species in the hsp 82 gene. There appears to be no Meselson effect in parthenogenetic oribatid mite species. Presumably, their low genetic divergence is due to automixis, other homogenizing mechanisms or strong selection to keep both the ef-1alpha and the hsp82 gene functioning.  相似文献   
95.
Sensing extracellular glucose, budding yeast switches from aerobic glycolysis to oxidative phosphorylation to adapt to environmental changes. During the conversion of metabolic mode, mitochondrial function and morphology change significantly. Mitochondria are the main supply factories of energy for various life activities in cells. However, the research on the signal pathways from glucose sensing to changes in mitochondrial function and morphology is still scarce and worthy of further exploration. In this study, we found that in addition to the known involvement of molecular chaperone Hsp82 in stress response during the conversion of metabolic mode, the phosphorylation status of Hsp82 at S485 residue regulates mitochondrial function and morphology to maintain mitochondrial homeostasis. The Hsp82S485A mutant that mimics dephosphorylation at S485 residue showed abnormal growth phenotypes related to mitochondrial defects, such as the petite phenotype, slow growth rates, and inability to use non-fermentable carbon sources. Further exploring the causes of growth defects, we found that the Hsp82S485A mutant caused mitochondrial dysfunction, including a decrease in cellular oxygen consumption rate, defects in mitochondrial electron transport chain, decreased mitochondrial membrane potential and complete loss of mtDNA. Furthermore, the Hsp82S485A mutant displayed fragmented or globular mitochondria, which may be responsible for its mitochondrial dysfunction. Our findings suggested that the phosphorylation status of Hsp82 at S485 residue might regulate mitochondrial function and morphology by affecting the stability of mitochondrial fission and fusion-related proteins. Thus, Hsp82 might be a key molecule in the signal pathway from glucose sensing to changes in mitochondrial function and morphology.  相似文献   
96.
In this study, the full-length genome sequence of the prototype of sapovirus, namely Sapporo virus (SV82), was identified. Sapporo virus RNA was extracted from a fecal sample, amplified by RT-PCR and the PCR products sequenced directly and analyzed. Sequence analysis showed that Sapporo virus consists of 7433 nucleotides and has three open reading frames. The Sapporo strain shows 91.7% nucleotide sequence identity to the Manchester virus. Phylogenic analysis has also revealed the closeness of Sapporo virus to other sapovirus/genogroup I strains. Basic information on the evolutionary history of sapovirus analysis is provided here.  相似文献   
97.
Genetic screens conducted using Drosophila melanogaster (fruit fly) have made numerous milestone discoveries in the advance of biological sciences. However, the use of biochemical screens aimed at extending the knowledge gained from genetic analysis was explored only recently. Here we describe a method to purify the protein complex that associates with any protein of interest from adult fly heads. This method takes advantage of the Drosophila GAL4/UAS system to express a bait protein fused with a Tandem Affinity Purification (TAP) tag in fly neurons in vivo, and then implements two rounds of purification using a TAP procedure similar to the one originally established in yeast1 to purify the interacting protein complex. At the end of this procedure, a mixture of multiple protein complexes is obtained whose molecular identities can be determined by mass spectrometry. Validation of the candidate proteins will benefit from the resource and ease of performing loss-of-function studies in flies. Similar approaches can be applied to other fly tissues. We believe that the combination of genetic manipulations and this proteomic approach in the fly model system holds tremendous potential for tackling fundamental problems in the field of neurobiology and beyond.  相似文献   
98.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.  相似文献   
99.
Hsp70 and Hsp90 molecular chaperones play essential roles in protein expression and maturation, and while catalyzing protein folding they can "decide" to target mis-folded substrates for degradation. In this report, we show for the first time distinct but partially overlapping requirements for Hsp90, Hsp70, and an Hsp70 nucleotide exchange factor (NEF) at different steps during the biogenesis of a model substrate, firefly luciferase (FFLux), in yeast. By examining the inducible expression of FFLux in wild type cells and in specific yeast mutants, we find that the Fes1p NEF is required for efficient FFLux folding, whereas the Hsp70, Ssa1p, is required for both protein folding and stability, and to maintain maximal FFLux mRNA levels. In contrast, Hsp90 function was primarily necessary to express the FFLux-encoding gene from an inducible promoter. Together, these data indicate previously unknown roles for these proteins and point to the complexity with which chaperones and cochaperones function in the cell.  相似文献   
100.
The genus Campylobacter contains pathogens causing a wide range of diseases, targeting both humans and animals. Among them, the Campylobacter fetus subspecies fetus and venerealis deserve special attention, as they are the etiological agents of human bacterial gastroenteritis and bovine genital campylobacteriosis, respectively. We compare the whole genomes of both subspecies to get insights into genomic architecture, phylogenetic relationships, genome conservation and core virulence factors. Pan-genomic approach was applied to identify the core- and pan-genome for both C. fetus subspecies and members of the genus. The C. fetus subspecies conserved (76%) proteome were then analyzed for their subcellular localization and protein functions in biological processes. Furthermore, with pathogenomic strategies, unique candidate regions in the genomes and several potential core-virulence factors were identified. The potential candidate factors identified for attenuation and/or subunit vaccine development against C. fetus subspecies contain: nucleoside diphosphate kinase (Ndk), type IV secretion systems (T4SS), outer membrane proteins (OMP), substrate binding proteins CjaA and CjaC, surface array proteins, sap gene, and cytolethal distending toxin (CDT). Significantly, many of those genes were found in genomic regions with signals of horizontal gene transfer and, therefore, predicted as putative pathogenicity islands. We found CRISPR loci and dam genes in an island specific for C. fetus subsp. fetus, and T4SS and sap genes in an island specific for C. fetus subsp. venerealis. The genomic variations and potential core and unique virulence factors characterized in this study would lead to better insight into the species virulence and to more efficient use of the candidates for antibiotic, drug and vaccine development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号