首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   439篇
  免费   42篇
  国内免费   24篇
  2024年   3篇
  2023年   14篇
  2022年   13篇
  2021年   20篇
  2020年   31篇
  2019年   35篇
  2018年   29篇
  2017年   23篇
  2016年   25篇
  2015年   28篇
  2014年   48篇
  2013年   61篇
  2012年   22篇
  2011年   27篇
  2010年   12篇
  2009年   24篇
  2008年   29篇
  2007年   27篇
  2006年   9篇
  2005年   4篇
  2004年   6篇
  2003年   10篇
  2002年   1篇
  2001年   3篇
  1999年   1篇
排序方式: 共有505条查询结果,搜索用时 15 毫秒
21.
Endothelial barrier dysfunction is a critical pathophysiological process of sepsis. Impaired endothelial cell migration is one of the main reasons for endothelial dysfunction. Statins may have a protective effect on endothelial barrier function. However, the effect and mechanism of statins on lipopolysaccharide (LPS)‐induced endothelial barrier dysfunction remain unclear. Simvastatin (SV) was loaded in nanostructured lipid carriers to produce SV nanoparticles (SV‐NPs). Normal SV and SV‐NPs were used to treat human umbilical vein vascular endothelial cells (HUVECs) injured by LPS. Barrier function was evaluated by monitoring cell monolayer permeability and transendothelial electrical resistance, and cell migration ability was measured by a wound healing assay. LY294002 and imatinib were used to inhibit the activity of PI3K/Akt and platelet‐derived growth factor receptor (PDGFR) β. IQ‐GTPase‐activating protein 1 (IQGAP1) siRNA was used to knockdown endogenous IQGAP1, which was used to verify the role of the PDGFRβ/PI3K/Akt/IQGAP1 pathway in SV/SV‐NPs‐mediated barrier protection in HUVECs injured by LPS. The results show that SV/SV‐NPs promoted the migration and decreased the permeability of HUVECs treated with LPS, and the efficacy of the SV‐NPs exceeded that of SV significantly. LY294002, imatinib and IQGAP1 siRNA all suppressed the barrier protection of SV/SV‐NPs. SV/SV‐NPs promoted the secretion of platelet‐derived growth factor‐BB (PDGF‐BB) and activated the PDGFRβ/PI3K/Akt/IQGAP1 pathway. SV preparations restored endothelial barrier function by restoring endothelial cell migration, which is involved in the regulation of the PDGFRβ/PI3K/Akt/IQGAP1 pathway and PDGF‐BB secretion. As an appropriate formulation for restoring endothelial dysfunction, SV‐NPs may be more effective than SV.  相似文献   
22.
Cancer is a worldwide increasing burden and its therapy is often challenging and causes severe side effects in healthy tissue. If drugs are loaded into nanoparticles, side effects can be reduced, and efficiency can be increased via the enhanced permeability and retention effect. This effect is based on the fact that nanoparticles with sizes from 10 to 200 nm can accumulate in tumor tissue due to their leaky vasculature. In this work, we produced polycaprolactone (PCL) in the sizes 1.8, 5.4, and 13.6 kDa and were able to produce spherical shaped nanoparticles with mean diameters of 64 ± 19 nm out of the PCL5.4 and 45 ± 8 nm out of the PCL13.6 reproducibly. By encapsulation of paclitaxel the diameter of that nanoparticles did not increase, and we were able to encapsulate 73 ± 7 fmol paclitaxel per 1000 particles in the PCL5.4‐nanoparticles and 35 ± 8 fmol PTX per 1000 PCL13.6‐nanoparticles. Furthermore, we coupled the aptamer S15 to preformed PCL5.4‐nanoparticles resulting in particles with a hydrodynamic diameter of 153 nm. This offers the opportunity to use these nanoparticles for targeted drug delivery.  相似文献   
23.
Nano and bulk-forms of zinc oxide (ZnO) are used extensively in industry and consequently may accumulate in the environment. However, there is little information available on the comparative effects of these forms during the critical early stages of plant life. Furthermore, the role of chelating agents, which affect the bioavailability of metals, in ameliorating plant stress due to exposure to nano and bulk-forms of ZnO is not well characterised. In this study, the effects of different concentrations (0.5, 2.5, 5, 10, 50 and 100 ppm) of nano ZnO (22 nm) and bulk ZnO (natural form, 1000 nm) with and without organic (citrate) and inorganic (EDTA) chelators on germination and seedling growth, and oxidative stress markers of Nicotiana tabacum L. were compared. Chelators (without ZnO) enhanced root growth, whilst ZnO negatively affected seedling growth. ZnO toxicity was often mitigated by adding chelators, especially citrate, although at the highest levels (50 and 100?ppm) of ZnO, toxicity was more pronounced when chelated with EDTA, but was decreased with citrate. Collectively, our findings provide important information regarding the different morpho-physiological and biochemical effects of bulk and nano ZnO and organic and inorganic chelators (citrate and EDTA), which are all prevalent in the environment.  相似文献   
24.
Molecular recognition in water is an important challenge in supramolecular chemistry. Surface‐core double cross‐linking of template‐containing surfactant micelles by the click reaction and free radical polymerization yields molecularly imprinted nanoparticles (MINPs) with guest‐complementary binding sites. An important property of MINP‐based receptors is the surface‐cross‐linking between the propargyl groups of the surfactants and a diazide cross‐linker. Decreasing the number of carbons in between the two azides enhanced the binding affinity of the MINPs, possibly by keeping the imprinted binding site more open prior to the guest binding. The depth of the binding pocket can be controlled by the distribution of the hydrophilic/hydrophobic groups of the template and was found to influence the binding in addition to electrostatic interactions between oppositely charged MINPs and guests. Cross‐linkers with an alkoxyamine group enabled two‐stage double surface‐cross‐linking that strengthened the binding constants by an order of magnitude, possibly by expanding the binding pocket of the MINP into the polar region. The binding selectivity among very similar isomeric structures also improved.  相似文献   
25.
Inorganic–organic hybrid nanoparticles formed by lanthanide-doped nanostructures and organic ligands have been intensively studied, which could greatly increase their photoluminescence performance as a result of the energy transfer process from organic ligands to Ln3+ ions. However, the photoluminescence intensity and excitation spectral width are still quite limited on coordinating with a single type of organic ligand. In this work, Eu3+-doped LaF3 (LaF3:Eu3+) nanoparticles were prepared using a hydrothermal method, and were then hybridized with benzoic acid and thenoyltrifluoroacetone to form the hybrid nanostructures. After that, the hybrid nanostructures were mixed with 2,2′-azobisisobutyronitrile and methyl methacrylate to prepare the composites. The sample obtained by hybridization and composite doping with 5% Eu3+ exhibited the best photoluminescence performance. The excitation peak width and luminescence intensity of the hybrid nanostructures were significantly increased. The excitation spectral width of the inorganic–organic mixed hybrid nanostructures was particularly enhanced, and covered the whole ultraviolet band region of solar light on Earth. The prepared composites exhibited good optical properties.  相似文献   
26.

Background

Injection localized amyloidosis is one of the most prevalent disorders in type II diabetes mellitus (TIIDM) patients relying on insulin injections. Previous studies have reported that nanoparticles can play a role in the amyloidogenic process of proteins. Hence, the present study deals with the effect of zinc oxide nanoparticles (ZnONP) on the amyloidogenicity and cytotoxicity of insulin.

Methods

ZnONP is synthesised and characterized using XRD, Zeta Sizer, UV-Visible spectroscope and TEM. The characterization is followed by ZnONP interaction with insulin, which is studied employing fluorescence spectroscopes, isothermal titration calorimetry and molecular dynamics simulations. The interaction leads insulin conformational rearrangement into amyloid-like fibril, which is studied using thioflavin T dye binding assay, circular dichroism spectroscopy and TEM, followed by cytotoxicity propensity using Alamar Blue dye reduction assay.

Results

Insulin has very weak interaction with ZnONP interface. Insulin at studied concentration forms amorphous aggregates at physiological pH, whereas in presence of ZnONP interface amyloid-like fibrils are formed. While the amyloid-like fibrils are cytotoxic to MIN6 and THP-1 cell lines, insulin and ZnONP individual solutions and their fresh mixtures enhance the cells proliferation.

Conclusions

The presence of ZnONP interface enhances insulin fibrillation at physiological pH by providing a favourable template for the nucleation and growth of insulin amyloids.

General significance

The studied protein-nanoparticle system from protein conformational dynamics point of view throws caution over nanoparticle use in biological applications, especially in vivo applications, considering the amyloidosis a very slow but non-curable degenerative disease.  相似文献   
27.
This study aims to explore the ability of magnetic resonance imaging (MRI) in mucin 1 (MUC1) modified superparamagnetic iron oxide nanoparticle (SPION) targeting human pancreatic cancer (PC). The MUC1 target-directed probe was prepared through MUC1 conjugated to SPION using the chemical method to assess its physiochemical characteristics, including hydration diameter, surface charge, and magnetic resonance signal. The cytotoxicity of MUC1-USPION was verified by MTS assay. BxPC-3 was cultured with MUC1-USPION and SPION in different concentrations. The combined condition of the targeted probes and cells were observed through Prussian blue staining. The nude mice model of pancreatic cancer was established to investigate the application of the probe. MRI was performed to determine the intensity of the signal of the transplanted tumor, while immunohistochemistry and Western blot analysis were performed to detect the expression of MUC1 after taking the transplanted tumor specimen. The particle size of the prepared molecular probe was 63.5 ± 3.2 nm, and the surface charge was 10.2 mV. Furthermore, the probe solution could significantly reduce the MRI at T2, and the magnetic resonance transverse relaxation rate (ΔR2) has a linear relationship with the concentration of iron in the solution. The cell viability of MUC1-USPION in different concentrations revealed no statistical difference, according to the MTS assay. In vitro, the MRI demonstrated decreased T2WI signal intensity in both groups, especially the targeting group. In vivo, MUC1 could selectively accumulate in the nude mice model, and significantly reduce the T2 signal strength. In subsequent experiments, the expression of MUC1 was high in pancreatic cancer tissues, but low in normal pancreatic tissues, as determined by immunohistochemistry and Western blot analysis. The prepared samples can be combined with pancreatic cancer tissue specificity by in vivo imaging, providing reliable early in vivo imaging data for disease diagnosis.  相似文献   
28.
This article features a new production technology for nanoparticles comprised of multicomponent polymeric complexes that are candidates for delivery vehicles of biological molecules such as proteins and drugs. Biocompatible and mostly natural polymers are fabricated into thermodynamically stable nanoparticles insoluble in water and buffered media, in the absence of organic solvents, using two types of processing: batch and continuous. Careful choice of construction materials and the superposition of several interacting principles during their production allow for the customization of the physicochemical properties of the structures. Detailed experiments in batch and continuous systems allowed time-dependent stoichiometric characterization of the production process and an understanding of fundamental assembly principles of such supramolecular structures. Continuous-flow production is shown to provide more consistent data in terms of product quality and consistency, with further possibility of process development and commercialization. The development of nanoparticles using the described methodology is expected to lead to a flexible nanoparticle drug delivery system for medical applications, which has particular bearing to the slow release of drugs, antigens (for vaccine design), and genes (for gene therapy). Several chemistries of particles are presented. Copyright John Wiley & Sons, Inc.  相似文献   
29.
The iron storage protein, apoferritin, has a cavity in which iron is oxidized and stored as a hydrated oxide core. The size of the core is about 7 nm in diameter and is regulated by the cavity size. The cavity can be utilized as a nanoreactor to grow inorganic crystals. We incubated apoferritin in nickel or chromium salt solutions to fabricate hydroxide nanoparticles in the cavity. By using a solution containing dissolved carbon dioxide and by precisely controlling the pH, we succeeded in fabricating nickel and chromium cores. During the hydroxylation process of nickel ions a large portion of the apoferritin precipitated through bulk precipitation of nickel hydroxide. Bulk precipitation was suppressed by adding ammonium ions. However, even in the presence of ammonium ions the core did not form using a degassed solution. We concluded that carbonate ions were indispensable for core formation and that the ammonium ions prevented precipitation in the bulk solution. The optimized condition for nickel core formation was 0.3 mg/mL horse spleen apoferritin and 5 mM ammonium nickel sulfate in water containing dissolved carbon dioxide. The pH was maintained at 8.65 using two buffer solutions: 150 mM HEPES (pH 7.5) and 195 mM CAPSO (pH 9.5) with 20 mM ammonium at 23 degrees C. The pH had not changed after 48 h. After 24 h of incubation, all apoferritins remained in the supernatant and all of them had cores. Recombinant L-ferritin showed less precipitation even above a pH of 8.65. A chromium core was formed under the following conditions: 0.1 mg/mL apoferritin, 1 mM ammonium chromium sulfate, 100 mM HEPES (pH 7.5) with a solution containing dissolved carbon dioxide. About 80% of the supernatant apoferritin (0.07 mg/mL) formed a core. In nickel and chromium core formation, carbonate ions would play an important role in accelerating the hydroxylation in the apoferritin cavity compared to the bulk solution outside.  相似文献   
30.
目的:制备一种超声和p H双重响应的同时载有阿霉素(DOX)与石胆酸(LA)的纳米胶束,实现两种药物的共转运。方法:将叠氮化的石胆酸(LA-(N3)_2)与两个丙炔胺化β-环糊精(β-CD-C≡CH)通过点击反应结合,得到一种两亲性β-环糊精二聚体(LA-(CD)_2)。该环糊精二聚体在水溶液中发生自组装,同时包裹疏水性药物阿霉素,最终得到阿霉素与石胆酸共转运的纳米胶束(LA-CD2/DOX)。通过核磁共振光谱和飞行时间质谱表征LA-(CD)2的结构,透射电镜(TEM)和动态光散射(DLS)表征共转运纳米粒的形貌和大小,动态透析法模拟体外释药,监测在不同p H值和超声作用下纳米胶束的释药特性,同时采用人口腔表皮样癌细胞(KB细胞)测定LA-(CD)2/DOX的细胞毒性。结果:1经核磁共振和飞行时间质谱表征LA-(CD)2成功合成。2透射电镜和动态光散射证实LA-(CD)2自组装成形态规整的纳米胶束,Dz=128 nm,PDI=0.21。3体外释药实验结果表明DOX的释药具有p H和超声双重响应性,而LA的释药只具有p H响应性。4细胞实验证实LA-CD2/DOX的细胞毒性高于DOX和LA。结论:LA-(CD)2/DOX可有望成为一种p H和超声双重响应的抗肿瘤药物共转运纳米载体。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号