首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   555篇
  免费   129篇
  国内免费   19篇
  2024年   1篇
  2023年   33篇
  2022年   21篇
  2021年   35篇
  2020年   34篇
  2019年   42篇
  2018年   45篇
  2017年   39篇
  2016年   45篇
  2015年   34篇
  2014年   40篇
  2013年   37篇
  2012年   27篇
  2011年   21篇
  2010年   21篇
  2009年   30篇
  2008年   18篇
  2007年   25篇
  2006年   17篇
  2005年   21篇
  2004年   16篇
  2003年   13篇
  2002年   7篇
  2001年   14篇
  2000年   16篇
  1999年   8篇
  1998年   9篇
  1997年   6篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   6篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1986年   2篇
  1982年   1篇
排序方式: 共有703条查询结果,搜索用时 93 毫秒
11.
Variation in species’ responses to abiotic phenological cues under climate change may cause changes in temporal overlap among interacting taxa, with potential demographic consequences. Here, we examine associations between the abiotic environment and plant–pollinator phenological synchrony using a long‐term syrphid fly–flowering phenology dataset (1992–2011). Degree‐days above freezing, precipitation, and timing of snow melt were investigated as predictors of phenology. Syrphids generally emerge after flowering onset and end their activity before the end of flowering. Neither flowering nor syrphid phenology has changed significantly over our 20‐year record, consistent with a lack of directional change in climate variables over the same time frame. Instead we document interannual variability in the abiotic environment and phenology. Timing of snow melt was the best predictor of flowering onset and syrphid emergence. Snow melt and degree‐days were the best predictors of the end of flowering, whereas degree‐days and precipitation best predicted the end of the syrphid period. Flowering advanced at a faster rate than syrphids in response to both advancing snow melt and increasing temperature. Different rates of phenological advancements resulted in more days of temporal overlap between the flower–syrphid community in years of early snow melt because of extended activity periods. Phenological synchrony at the community level is therefore likely to be maintained for some time, even under advancing snow melt conditions that are evident over longer term records at our site. These results show that interacting taxa may respond to different phenological cues and to the same cues at different rates but still maintain phenological synchrony over a range of abiotic conditions. However, our results also indicate that some individual plant species may overlap with the syrphid community for fewer days under continued climate change. This highlights the role of interannual variation in these flower–syrphid interactions and shows that species‐level responses can differ from community‐level responses in nonintuitive ways.  相似文献   
12.
1. The ideal conditions for a parasite are typically found with its preferred host. However, prior to transmission to a naïve host and successful infection, a parasite may have to withstand extrinsic environmental conditions. Some parasites have adapted to time away from hosts, for example, by co-opting vectors or by having drought-resistant growth stages. However, other parasites may have no obvious adaptations to persist during prolonged transmission cycles. Consequently, the environment may detrimentally impact parasite fitness and ultimately epidemiology. 2. Here, we investigate the impact of nectar-realistic sugar concentrations on the ability of the trypanosome parasite Crithidia bombi, which may be transmitted between conspecifics at flowers, to infect its bumblebee host Bombus terrestris and to reproduce during the infection (parasitaemia). Our results show, following 30 min exposure to our experimental nectars that as sugar concentration increases, infection prevalence and parasitaemia decrease. This is likely due to the increased osmotic stress C. bombi experiences in high sugar, aqueous environments. 3. Consequently, if C. bombi transmission is facilitated by nectar or a high-sugar environment, it may have a negative impact on parasite fitness.  相似文献   
13.
When differentiated lineages come into contact, their fates depend on demographic and reproductive factors. These factors have been well-studied in taxa of the same ploidy, but less is known about sympatric lineages that differ in ploidy, particularly with respect to demographic factors. We assessed prezygotic, postzygotic, and total reproductive isolation in naturally pollinated arrays of diploid-tetraploid and tetraploid-hexaploid population mixes of Campanula rotundifolia by measuring pollinator transitions, seed yield, germination rate, and proportion of hybrid offspring. Four frequencies of each cytotype were tested, and pollinators consistently overvisited rare cytotypes. Seed yield and F1 hybrid production were greater in 4X-6X arrays than 2X-4X arrays, whereas germination rates were similar, creating two distinct patterns of reproductive isolation. In 2X-4X arrays, postzygotic isolation was near complete (3% hybrid offspring), and prezygotic isolation associated with pollinator preference is expected to facilitate the persistence of minority cytotypes. However, in 4X-6X arrays where postzygotic isolation permitted hybrid formation (44% hybrids), pollinator behavior drove patterns of reproductive isolation, with rare cytotypes being more isolated and greater gene flow expected from rare into common cytotypes. In polyploid complexes, both the specific cytotypes in contact and local cytotype frequency, likely reflecting spatial demography, will influence likelihood of gene exchange.  相似文献   
14.

Background and Aims

The coastal plain of Israel hosts the last few remaining populations of the endemic Iris atropurpurea (Iridaceae), a Red List species of high conservation priority. The flowers offer no nectar reward. Here the role of night-sheltering male solitary bees, honey-bees and female solitary bees as pollinators of I. atropurpurea is documented.

Methods

Breeding system, floral longevity, stigma receptivity, visitation rates, pollen loads, pollen deposition and removal and fruit- and seed-set were investigated.

Key Results

The main wild pollinators of this plant are male eucerine bees, and to a lesser extent, but with the potential to transfer pollen, female solitary bees. Honey-bees were found to be frequent diurnal visitors; they removed large quantities of pollen and were as effective as male sheltering bees at pollinating this species. The low density of pollen carried by male solitary bees was attributed to grooming activities, pollen displacement when bees aggregated together in flowers and pollen depletion by honey-bees. In the population free of honey-bee hives, male bees carried significantly more pollen grains on their bodies. Results from pollen analysis and pollen deposited on stigmas suggest that inadequate pollination may be an important factor limiting fruit-set. In the presence of honey-bees, eucerine bees were low removal–low deposition pollinators, whereas honey-bees were high removal–low deposition pollinators, because they removed large amounts into corbiculae and deposited relatively little onto receptive stigmas.

Conclusions

Even though overall, both bee taxa were equally effective pollinators, we suggest that honey-bees have the potential to reduce the amount of pollen available for plant reproduction, and to reduce the amount of resources available to solitary bee communities. The results of this study have potential implications for the conservation of this highly endangered plant species if hives are permitted inside reserves, where the bulk of Oncocyclus iris species are protected.  相似文献   
15.

Background and Aims

Convergent floral traits hypothesized as attracting particular pollinators are known as pollination syndromes. Floral diversity suggests that the Australian epacrid flora may be adapted to pollinator type. Currently there are empirical data on the pollination systems for 87 species (approx. 15 % of Australian epacrids). This provides an opportunity to test for pollination syndromes and their important morphological traits in an iconic element of the Australian flora.

Methods

Data on epacrid–pollinator relationships were obtained from published literature and field observation. A multivariate approach was used to test whether epacrid floral attributes related to pollinator profiles. Statistical classification was then used to rank floral attributes according to their predictive value. Data sets excluding mixed pollination systems were used to test the predictive power of statistical classification to identify pollination models.

Key Results

Floral attributes are correlated with bird, fly and bee pollination. Using floral attributes identified as correlating with pollinator type, bird pollination is classified with 86 % accuracy, red flowers being the most important predictor. Fly and bee pollination are classified with 78 and 69 % accuracy, but have a lack of individually important floral predictors. Excluding mixed pollination systems improved the accuracy of the prediction of both bee and fly pollination systems.

Conclusions

Although most epacrids have generalized pollination systems, a correlation between bird pollination and red, long-tubed epacrids is found. Statistical classification highlights the relative importance of each floral attribute in relation to pollinator type and proves useful in classifying epacrids to bird, fly and bee pollination systems.  相似文献   
16.
Potential declines in native pollinator communities and increased reliance on pollinator‐dependent crops have raised concerns about native pollinator conservation and dispersal across human‐altered landscapes. Bumble bees are one of the most effective native pollinators and are often the first to be extirpated in human‐altered habitats, yet little is known about how bumble bees move across fine spatial scales and what landscapes promote or limit their gene flow. In this study, we examine regional genetic differentiation and fine‐scale relatedness patterns of the yellow‐faced bumble bee, Bombus vosnesenskii, to investigate how current and historic habitat composition impact gene flow. We conducted our study across a landscape mosaic of natural, agricultural and urban/suburban habitats, and we show that B. vosnesenskii exhibits low but significant levels of differentiation across the study system (FST = 0.019, Dest = 0.049). Most importantly, we reveal significant relationships between pairwise FST and resistance models created from contemporary land use maps. Specifically, B. vosnesenskii gene flow is most limited by commercial, industrial and transportation‐related impervious cover. Finally, our fine‐scale analysis reveals significant but declining relatedness between individuals at the 1–9 km spatial scale, most likely due to local queen dispersal. Overall, our results indicate that B. vosnesenskii exhibits considerable local dispersal and that regional gene flow is significantly limited by impervious cover associated with urbanization.  相似文献   
17.
Floral colors are widely believed to be an adaptation to attract pollinators. Recently, our understanding of floral reflectance has broadened to include colors that are beyond the spectrum that human eyes can perceive (such as ultraviolet (UV) reflectance), yet we still know relatively little about which plant species reflect UV light or its effectiveness in attracting pollinators. We investigated the effect of UV reflectance in Mimulus guttatus in a number of different populations in British Columbia, Canada. We found that M. guttatus had distinct regions of the corolla where UV light was reflected and absorbed. When we manipulated the degree of contrast between the reflection and absorption area, we found that pollinator visitation was severely disrupted, in terms of frequency and foraging patterns observed. Despite the bright yellow (bee‐green) coloration and visible nectar guides in M. guttatus, we conclude that UV reflectance is critical in pollinator attraction.  相似文献   
18.
19.
Background: The arrangement of flowers on inflorescences is important for determining the movement of pollinators within the inflorescence and, consequently, the overall mating success and fruit set of a plant.

Aims: Spiranthes spiralis is an orchid that has a spiralled inflorescence. The species has two chiral forms that show opposite coiling directions (clockwise and anti-clockwise). We tested if this arrangement of inflorescence influences pollinator attraction and behaviour.

Methods: We surveyed two natural populations, analysed the reproductive compatibility of the two morphs and estimated pollination success in natural and experimental populations.

Results: We found that the two morphs were not isolated by pre- or post-mating barriers, occurred with a similar proportion in natural populations and showed similar levels of pollination success both in natural and artificial populations. However, we found a different pattern of pollination success along the inflorescences. In the two morphs, lower flowers experienced a higher pollination rate and this rate decreased along the inflorescence faster in anti-clockwise than in clockwise individuals.

Conclusions: This finding suggests that pollinators visit the flowers sequentially from the lower part of the inflorescences and leave the anti-clockwise individuals more rapidly than the clockwise ones. However, this pollinator behaviour is not detrimental for the pollination success of either of the two morphs.  相似文献   
20.
Pollinator and/or mate scarcity affects pollen transfer, with important ecological and evolutionary consequences for plant reproduction. However, the way in which the pollen loads transported by pollinators and deposited on stigmas are affected by pollination context has been little studied. We investigated the impacts of plant mate and visiting insect availabilities on pollen transport and receipt in a mass‐flowering and facultative autogamous shrub (Rhododendron ferrugineum). First, we recorded insect visits to R. ferrugineum in plant patches of diverse densities and sizes. Second, we analyzed the pollen loads transported by R. ferrugineum pollinators and deposited on stigmas of emasculated and intact flowers, in the same patches. Overall, pollinators (bumblebees) transported much larger pollen loads than the ones found on stigmas, and the pollen deposited on stigmas included a high proportion of conspecific pollen. However, comparing pollen loads of emasculated and intact flowers indicated that pollinators contributed only half the conspecific pollen present on the stigma. At low plant density, we found the highest visitation rate and the lowest proportion of conspecific pollen transported and deposited by pollinators. By contrast, at higher plant density and lower visitation rate, pollinators deposited larger proportion of conspecific pollen, although still far from sufficient to ensure that all the ovules were fertilized. Finally, self‐pollen completely buffered the detrimental effects on pollination of patch fragmentation and pollinator failure. Our results indicate that pollen loads from pollinators and emasculated flowers should be quantified for an accurate understanding of the relative impacts of pollinator and mate limitation on pollen transfer in facultative autogamous species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号