首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2075篇
  免费   105篇
  国内免费   34篇
  2023年   41篇
  2022年   42篇
  2021年   49篇
  2020年   46篇
  2019年   41篇
  2018年   39篇
  2017年   32篇
  2016年   47篇
  2015年   47篇
  2014年   90篇
  2013年   91篇
  2012年   80篇
  2011年   71篇
  2010年   71篇
  2009年   88篇
  2008年   105篇
  2007年   93篇
  2006年   87篇
  2005年   87篇
  2004年   106篇
  2003年   79篇
  2002年   91篇
  2001年   68篇
  2000年   52篇
  1999年   57篇
  1998年   45篇
  1997年   36篇
  1996年   37篇
  1995年   34篇
  1994年   24篇
  1993年   33篇
  1992年   32篇
  1991年   33篇
  1990年   32篇
  1989年   29篇
  1988年   17篇
  1987年   14篇
  1986年   21篇
  1985年   16篇
  1984年   24篇
  1983年   12篇
  1982年   15篇
  1981年   7篇
  1980年   5篇
  1979年   13篇
  1977年   10篇
  1976年   4篇
  1975年   5篇
  1973年   4篇
  1972年   4篇
排序方式: 共有2214条查询结果,搜索用时 31 毫秒
81.
82.
The Malpighian tubule is the main organ for excretion and osmoregulation in most insects. During a short period of embryonic development the tubules of Drosophila are shaped, undergo differentiation and become precisely positioned in the body cavity, so they become fully functional at the time of larval hatching a few hours later. In this review I explore three developmental events on the path to physiological maturation. First, I examine the molecular and cellular mechanisms that generate organ shape, focusing on the process of cell intercalation that drives tubule elongation, the roles of the cytoskeleton, the extracellular matrix and how intercalation is coordinated at the tissue level. Second, I look at the genetic networks that control the physiological differentiation of tubule cells and consider how distinctive physiological domains in the tubule are patterned. Finally, I explore how the organ is positioned within the body cavity and consider the relationship between organ position and function.  相似文献   
83.
《Organogenesis》2013,9(1):86-95
Cystic kidney diseases can cause end stage renal disease, affecting millions of individuals worldwide. They may arise early or later in life, are characterized by a spectrum of symptoms and can be caused by diverse genetic defects. The primary cilium, a microtubule-based organelle that can serve as a signaling antenna, has been demonstrated to have a significant role in ensuring correct kidney development and function. In the kidney, one of the signaling pathways that requires the cilium for normal development is Wnt signaling. In this review, the roles of primary cilia in relation to canonical and non-canonical Wnt/PCP signaling in cystic renal disease are described. The evidence of the associations between cilia, Wnt signaling and cystic renal disease is discussed and the significance of planar cell polarity-related mechanisms in cystic kidney disease is presented. Although defective Wnt signaling is not the only cause of renal disease, research is increasingly highlighting its importance, encouraging the development of Wnt-associated diagnostic and prognostic tools for cystic renal disease.  相似文献   
84.
《Organogenesis》2013,9(2):65-70
The extracellular matrix (ECM) plays an essential role in organizing tissues, defining their shapes or in presenting growth factors. Their components have been well described in most species, but our understanding of the mechanisms that control ECM remodeling remains limited. Likewise, how the ECM contributes to cellular mechanical responses has been examined in few cases. Here, I review how studies performed in C. elegans have brought several significant advances on those topics. Focusing only on epithelial cells, I discuss basement membrane invasion by the anchor cell during vulva morphogenesis, a process that has greatly expanded our knowledge of ECM remodeling in vivo. I then discuss the ECM role in a novel mechanotransduction process, whereby muscle contractions stimulate the remodeling of hemidesmosome-like junctions in the epidermis, which highlights that these junctions are mechanosensitive. Finally, I discuss progress in defining the composition and potential roles of the apical ECM covering epidermal cells in embryos.  相似文献   
85.
《Fly》2013,7(3):157-164
The FGFR pathway triggers a wide range of key biological responses. Among others, the Breathless (Btl, Drosophila FGFR1) receptor cascade promotes cell migration during embryonic tracheal system development. However, how the actin cytoskeleton responds to Btl pathway activation to induce cell migration has remained largely unclear. Our recent results shed light into this issue by unveiling a link between the actin-bundling protein Singed (Sn) and the Btl pathway. We showed that the Btl pathway regulates sn, which leads to the stabilization of the actin bundles required for filopodia formation and actin cytoskeleton rearrangement. This regulation contributes to tracheal migration, tracheal branch fusion and tracheal cell elongation. Parallel actin bundles (PABs) are usually cross-linked by more than one actin-bundling protein. Accordingly, we have also shown that sn synergistically interacts with forked (f), another actin crosslinker. In this Extra View we extend f analysis and hypothesize how both actin-bundling proteins may act together to regulate the PABs during tracheal embryonic development. Although both proteins are required for similar tracheal events, we suggest that Sn is essential for actin bundle initiation and stiffening, while F is required for the lengthening and further stabilization of the PABs.  相似文献   
86.
87.

Background and Aims

The morphogenesis of lobed mesophyll cells (MCs) is highly controlled and coupled with intercellular space formation. Cortical microtubule rings define the number and the position of MC isthmi. This work investigated early events of MC morphogenesis, especially the mechanism defining the position of contacts between MCs. The distributions of plasmodesmata, the hemicelluloses callose and (1 → 3,1 → 4)-β-d-glucans (MLGs) and the pectin epitopes recognized by the 2F4, JIM5, JIM7 and LM6 antibodies were studied in the cell walls of Zea mays MCs.

Methods

Matrix cell wall polysaccharides were immunolocalized in hand-made sections and in sections of material embedded in LR White resin. Callose was also localized using aniline blue in hand-made sections. Plasmodesmata distribution was examined by transmission electron microscopy.

Results

Before reorganization of the dispersed cortical microtubules into microtubule rings, particular bands of the longitudinal MC walls, where the MC contacts will form, locally differentiate by selective (1) deposition of callose and the pectin epitopes recognized by the 2F4, LM6, JIM5 and JIM7 antibodies, (2) degradation of MLGs and (3) formation of secondary plasmodesmata clusterings. This cell wall matrix differentiation persists in cell contacts of mature MCs. Simultaneously, the wall bands between those of future cell contacts differentiate with (1) deposition of local cell wall thickenings including cellulose microfibrils, (2) preferential presence of MLGs, (3) absence of callose and (4) transient presence of the pectins identified by the JIM5 and JIM7 antibodies. The wall areas between cell contacts expand determinately to form the cell isthmi and the cell lobes.

Conclusions

The morphogenesis of lobed MCs is characterized by the early patterned differentiation of two distinct cell wall subdomains, defining the sites of the future MC contacts and of the future MC isthmi respectively. This patterned cell wall differentiation precedes cortical microtubule reorganization and may define microtubule ring disposition.  相似文献   
88.
Afin d'apporter des arguments supplémentaires à?hypothese selon laquelle les rhythms circadiens sont impliqués dans la morphogénèse, des expériences ont été réalisées de manière a mettre en évidence la relation éventuelle de dépendance entre le moment (dans le cycle de 24 heures) où commence le traitement et ? effet (1) de la morphactine, un inhibiteur compétitif de ?'auxine et (2) de ? auxine (IAA).

Les résultats ont montré que (1) ? effet inhibiteur de la morphactine varie considérablement selon le moment auquel le traitement a commencé, plusieurs semaines avant ? expression morphogénétique; (2) le maximum d'inhibition change avec le stade de développement et le degré d'inhibition diminue avec le temps; (3) ?'IAA accélerè la formation du chapeau lorsque le traitement a commencé pendant la phase de croissance rapide des algues; ? effet depend du moment (du cycle de 24 heures) auquel il a commencé son effet diminue au cours du temps; (4) lorsque le traitement a commencé avec des algues plus petites que les precédéntes, il exerce un effet transitoirement inhibiteur qui dépend du moment du cycle de 24 heures auquel il a commence; (5) les fragments anucléés aussi répondent différentiellement à un traitement à ? IAA commencé a différents moments du cycle de 24 heures; ? effet est plus net quand des mRNA ont été accumulés; (6) ? effet de ? IAA n'est pas cumulé a celui d'une perturbation du cycle L-D; celui de la morphactine n'est pas modifyé ou est légérement amélioré par une perturbation du cycle L-D.

Mots clefs–Acetabularia, rhymes circadiens, morphogénèse, auxine, morphactine.

In order to support the hypothesis that circadian rhythms are implicated in cap formation, experiments were undertaken on the possible time-dependency of the effects of (a) a competitive inhibitor of auxins, morphactin and (b) of auxin (IAA). It was found that: (i) the inhibitory effect of morphactin varies dramatically with the time at which the several weeks' treatment was first begun; (ii) the maximum inhibition varies with development and decreases with time; (iii) IAA accelerates cap formation when the algae are submitted to IAA during the exponential growth phase; the effect is time dependent and decreases with time; (iv) IAA first applied on smaller algae has a transient inhibitory effect which is time dependent; (v) anucleate fragments also respond differentially to an IAA treatment begun at several times in the 24-hr cycle, most clearly when newly formed mRNA have been accumulated and (vi) the effect of iAA is not cumulative with that of a LD shift; that of morphactin is not, or only slightly, improved by a LD shift.  相似文献   
89.
The process of mouth and coelom formation in exogastrulae of the starfish, Pisaster ochraceus, induced by LiCl, has been studied with the light microscope, scanning and transmission electron microscopes. Bending and segmentation of the exogastrulated archenteron with the formation of either single or double coelomic pouches follows the same schedule as the control. In addition, a region of the exogastrular ectoderm, which corresponds to the area of the mouth in controls, undergoes invagination. Early morphogenesis of the archenteron and invagination of the ectoderm during mouth formation appear to be intrinsic properties of these structures.

At the time of mouth formation in the controls, a discrete region adjacent to the distal end of the exogastrulated archenteron becomes sticky. Examination of this region shows that the surfaces of the archenteron cells are relatively smooth and that processes of the mesenchyme cells extend between them. The evidence suggests that the mesenchyme cells are responsible for the stickiness, and that they may guide the archenteron and ectoderm into contact and maintain the contact during normal mouth formation.  相似文献   
90.
The formation of tissues is essential for metazoan development. During Caenorhabditis elegans embryogenesis, ventral epidermal cells migrate to encase the ventral surface of the embryo in a layer of epidermis by a process known as ventral enclosure. This process is regulated by guidance cues secreted by the underlying neuroblasts. However, since the cues and their receptors are differentially expressed in multiple cell types, the role of the neuroblasts in ventral enclosure is not fully understood. Furthermore, although F-actin is required for epidermal cell migration, it is not known if nonmuscle myosin is also required. Anillin (ANI-1) is an actin and myosin-binding protein that coordinates actin–myosin contractility in the early embryo. Here, we show that ANI-1 localizes to the cleavage furrows of dividing neuroblasts during mid-embryogenesis and is required for their division. Embryos depleted of ani-1 display a range of ventral enclosure phenotypes, where ventral epidermal cells migrate with similar speeds to control embryos, but contralateral neighbors often fail to meet and are misaligned. The ventral enclosure phenotypes in ani-1 RNAi embryos suggest that the position or shape of neuroblasts is important for directing ventral epidermal cell migration, although does not rule out an autonomous requirement for ani-1 in the epidermal cells. Furthermore, we show that rho-1 and other regulators of nonmuscle myosin activity are required for ventral epidermal cell migration. Interestingly, altering nonmuscle myosin contractility alleviates or strengthens ani-1's ventral enclosure phenotypes. Our findings suggest that ventral enclosure is a complex process that likely relies on inputs from multiple tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号