首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4003篇
  免费   454篇
  国内免费   476篇
  2024年   9篇
  2023年   113篇
  2022年   104篇
  2021年   161篇
  2020年   188篇
  2019年   189篇
  2018年   202篇
  2017年   167篇
  2016年   211篇
  2015年   177篇
  2014年   218篇
  2013年   317篇
  2012年   163篇
  2011年   258篇
  2010年   146篇
  2009年   230篇
  2008年   205篇
  2007年   201篇
  2006年   185篇
  2005年   156篇
  2004年   153篇
  2003年   119篇
  2002年   113篇
  2001年   101篇
  2000年   70篇
  1999年   66篇
  1998年   61篇
  1997年   63篇
  1996年   60篇
  1995年   57篇
  1994年   46篇
  1993年   52篇
  1992年   38篇
  1991年   39篇
  1990年   26篇
  1989年   29篇
  1988年   22篇
  1987年   12篇
  1986年   14篇
  1985年   19篇
  1984年   29篇
  1983年   26篇
  1982年   30篇
  1981年   14篇
  1980年   11篇
  1979年   14篇
  1977年   10篇
  1976年   10篇
  1975年   6篇
  1973年   10篇
排序方式: 共有4933条查询结果,搜索用时 62 毫秒
971.
Environmental deterioration together with the need for water reuse and the increasingly restrictive legislation of water quality standards have led to a demand for compact, efficient and less energy consuming technologies for wastewater treatment. Aerobic granular sludge and membrane bioreactors (MBRs) are two technologies with several advantages, such as small footprint, high-microbial density and activity, ability to operate at high organic- and nitrogen-loading rates, and tolerance to toxicity. However, they also have some disadvantages. The aerobic granular sludge process generally requires post-treatment in order to fulfill effluent standards and MBRs suffer from fouling of the membranes. Integrating the two technologies could be a way of combining the advantages and addressing the main problems associated with both processes. The use of membranes to separate the aerobic granules from the treated water would ensure high-quality effluents suitable for reuse. Moreover, the use of granular sludge in MBRs has been shown to reduce fouling. Several recent studies have shown that the aerobic granular membrane bioreactor (AGMBR) is a promising hybrid process with many attractive features. However, major challenges that have to be addressed include how to achieve granulation and maintain granular stability during continuous operation of reactors. This paper aims to review the current state of research on AGMBR technology while drawing attention to relevant findings and highlight current limitations.  相似文献   
972.
Owing to certain drawbacks, such as energy-intensive operations in conventional modes of wastewater treatment (WWT), there has been an extensive search for alternative strategies in treatment technology. Biological modes for treating wastewaters are one of the finest technologies in terms of economy and efficiency. An integrated biological approach with chemical flocculation is being conventionally practiced in several-sewage and effluent treatment plants around the world. Overwhelming responsiveness to treat wastewaters especially by using microalgae is due to their simplest photosynthetic mechanism and ease of acclimation to various habitats. Microalgal technology, also known as phycoremediation, has been in use for WWT since 1950s. Various strategies for the cultivation of microalgae in WWT systems are evolving faster. However, the availability of innovative approaches for maximizing the treatment efficiency, coupled with biomass productivity, remains the major bottleneck for commercialization of microalgal technology. Investment costs and invasive parameters also delimit the use of microalgae in WWT. This review critically discusses the merits and demerits of microalgal cultivation strategies recently developed for maximum pollutant removal as well as biomass productivity. Also, the potential of algal biofilm technology in pollutant removal, and harvesting the microalgal biomass using different techniques have been highlighted. Finally, an economic assessment of the currently available methods has been made to validate microalgal cultivation in wastewater at the commercial level.  相似文献   
973.
There was no effective measures can be obtained at present to reverse or prevent airway remodeling. We investigated the therapeutic effect of Erythropoietin (EPO) gene modified mesenchymal stem cells (MSCs) on asthmatic airway remodeling and the possible underlied molecular mechanisms. EPO gene was transfected into MSCs via lentivirus vector. The transfected cells (EPO‐MSCs) were identified by flow cytometry and the EPO secreting function was detected by PCR and Western blot. MSCs or EPO‐MSCs were administrated to albumin (OVA)‐induced chronic asthmatic mouse model via tail veins. The asthmatic phenotype was analyzed. Number of cells in bronchoalveolar lavage fluid (BALF) was counted using a hemocytometer. Histological findings of airways were evaluated by microscopic examination. The concentrations of interleukin 4(IL‐4), interleukin 5(IL‐5), and interleukin 13(IL‐13) in lung homogenate were determined by ELISA. The activation state of transforming growth factor‐β 1 (TGF‐β1), Transforming growth factor beta‐activated kinase 1 (TAK1), and p38 Mitogen Activated Protein Kinase (p38MAPK) signaling was detected by Real‐Time PCR and Western blotting. EPO‐MSCs were successfully constructed. EPO‐MSCs showed a more potently suppressive effect on local asthmatic airway inflammation and the level of IL‐4, IL‐5, and IL‐13 in lung tissue than MSCs. Moreover, the numbers of goblet cells, the thicknesses of smooth muscle layer, collagen density, percentage of proliferating cell nuclear antigen positive (PCNA+) mesenchymal cells, and von Willebrand factor positive(vWF+) vessels were also significantly inhibited by EPO‐MSCs. Furthermore, EPO‐MSCs could downregulate the expression of TGF‐β1, TAK1, and p38MAPK in lung tissue both in mRNA level and in protein level. EPO gene modified MSCs may more efficiently attenuate asthmatic airway remodeling, which maybe related with the downregulation of TGF‐β1‐TAK1‐p38MAPK pathway activity.  相似文献   
974.
975.
976.
Fermentation is one of the most critical steps of the fuel ethanol production and it is directly influenced by the fermentation system, selected yeast, and bacterial contamination, especially from the genus Lactobacillus. To control the contamination, the industry applies antibiotics and biocides; however, these substances can result in an increased cost and environmental problems. The use of the acid treatment of cells (water‐diluted sulphuric acid, adjusted to pH 2·0–2·5) between the fermentation cycles is not always effective to combat the bacterial contamination. In this context, this study aimed to evaluate the effect of ethanol addition to the acid treatment to control the bacterial growth in a fed‐batch system with cell recycling, using the industrial yeast strain Saccharomyces cerevisiae PE–2. When only the acid treatment was used, the population of Lactobacillus fermentum had a 3‐log reduction at the end of the sixth fermentation cycle; however, when 5% of ethanol was added to the acid solution, the viability of the bacterium was completely lost even after the first round of cell treatment. The acid treatment +5% ethanol was able to kill L. fermentum cells without affecting the ethanol yield and with a low residual sugar concentration in the fermented must.

Significance and Impact of the Study

In Brazilian ethanol‐producing industry, water‐diluted sulphuric acid is used to treat the cell mass at low pH (2·0) between the fermentative cycles. This procedure reduces the number of Lactobacillus fermentum from 107 to 104 CFU per ml. However, the addition of 5% ethanol to the acid treatment causes the complete loss of bacterial cell viability in fed‐batch fermentation with six cell recycles. The ethanol yield and yeast cell viability are not affected. These data indicate the feasibility of adding ethanol to the acid solution replacing the antibiotic use, offering a low cost and a low amount of residue in the biomass.  相似文献   
977.
MBRI-001 was demonstrated preliminary better pharmacokinetics and antitumor effects than that of plinabulin in vivo. In this approach, we further carried out systematic pharmacokinetic and pharmacodynamic study of MBRI-001 in vitro and in vivo. MBRI-001 was tested stable in rat plasma and more stable in liver microsomes than plinabulin in vitro. In vivo, MBRI-001 could be distributed rapidly and widely in various tissues, especially the concentration of MBRI-001 in lung was remarkably higher than other tissues. Excretion study indicated that MBRI-001 might been decomposed and excreted as metabolites. Additionally, the combination treatment of MBRI-001 and gefitinib revealed better antitumor inhibition rate than monotherapy in vivo. Therefore, we suggest that MBRI-001 could be developed as a promising anti-cancer agent in near future.  相似文献   
978.
研究不同地膜覆盖时间对北方旱作农田土壤团聚体粒级稳定性和有机碳的影响,可为提升旱作农田生产力和保护农田环境选择合适的管理方式提供科学依据。以辽宁阜新5年秋覆膜(AP)、春覆膜(SP)和不覆膜(CK)的定位试验为研究对象,分析不同覆膜时间对0—10 cm和10—20 cm土层中2 mm、0.25—2 mm、0.053—0.25 mm和0.053 mm粒级的土壤水稳性团聚体的稳定性及有机碳的影响。结果表明,在北方旱作农田,连续5年的地膜覆盖可显著改变0—10 cm土层的土壤各级团聚体的分布、团聚体中有机碳的含量及其对土壤有机碳含量的贡献率,进而增加土壤水稳性团聚体的稳定性,而对10—20 cm土层影响不显著。与不覆膜相比,秋覆膜和春覆膜可显著提高0—10 cm土层2 mm的水稳性团聚体的含量,分别提高了36.3%、47.9%(P0.05),而对微团聚体无显著影响,说明地膜覆盖有利于提高大团聚体数量及稳定性。在0—10 cm土层,粒径2 mm团聚体有机碳含量及储量表现为秋覆膜最高,显著高于春覆膜和不覆膜处理(P0.05)。与裸地不覆膜相比,秋覆膜和春覆膜显著提高2 mm团聚体中有机碳含量对土壤有机碳的贡献率,分别提高了37%和26.1%(P0.05)。而在0—10 cm和10—20cm土层中,微团聚体中有机碳含量对土壤有机碳贡献率没有影响。在辽宁阜新土壤及种植条件下,秋覆膜处理不仅显著提高0—10 cm土壤水稳性大团聚体的含量和稳定性,还可以显著增加水稳性大团聚体有机碳含量及储量,促进有机碳的固存。  相似文献   
979.
为探明沿海滩涂极重度盐土盐分动态规律及其影响因子,并探讨盐生植被和秸秆覆盖下土壤的脱盐及控盐效果,2014年5月—2015年5月,在江苏沿海滩涂极重度盐土中进行田间试验,设置4种处理:对照(裸地,CK)、种植碱蓬(PS)、15 t·hm-2秸秆覆盖(SM-A)和30t·hm-2秸秆覆盖(SM-2A),监测气候因子和土壤盐分的动态变化.结果表明:(1)滩涂裸地表层土壤盐分具有显著的季节性变化特征,表现为在6—8月盐分降低至最低值(8.69g·kg-1),9—12月呈现积盐作用,最大值为26.66 g·kg-1;表层土壤盐分变化比亚表层更剧烈,而且亚表层盐分变化相对于表层具有一定的滞后性;(2)相关分析表明,滩涂裸地表层盐分变化与采样前15 d的累积降雨量及蒸降比具有显著的线性关系;多因子及互作逐步分析表明,降雨量增加可以显著促进脱盐作用,大气温度升高可加剧盐分积累,降雨量和大气温度的互作效应增加会对盐分累积产生正效应;(3)PS处理没有显著改变土壤盐分的季节性变化规律,但降低了表层土壤盐分;(4)SM-A和SM-2A条件下,土壤脱盐率与覆盖处理天数回归拟合符合Logistic曲线,且经过雨季覆盖处理90~100 d后表层土壤脱盐率均可达到95.0%以上,覆盖处理120 d后亚表层土壤脱盐率均可达到92.0%以上,之后表层和亚表层土壤盐分分别在0.60和1.00 g·kg-1以下波动.综合考虑脱盐效果和经济投入,在梅雨季节前(4—5月)采用15 t·hm-2秸秆覆盖,可能是未来滩涂极重度盐土进行快速脱盐和改良的重要措施.  相似文献   
980.
Ecological restoration in tropical dry forests urgently needs to incorporate experimental evidence to increase effectiveness. The main barriers for tree establishment are adverse microenvironmental conditions and competition with exotic grasses. Therefore, management should address such barriers in order to enhance tree performance. We evaluated the effect of plastic mulching, grass removal, and no management on survival after 2 months and stem volume and canopy size after 2 years and integrated response index (IRI) in plantings of 11 native tree species with different growth rates in pastures near the tropical dry forest of Chamela, Mexico. Results revealed that: (1) initial seedling mortality was minimal in all treatments (8%) and lowest under no management (2%); (2) plastic mulching, but not grass removal, leads to increased size for most species, irrespective of their growth rank; (3) a trade‐off between initial plant survival and size after 2 years occurred due to plastic mulching; and (4) most species showed similar values of the IRI because of high survival, stem volume, or canopy cover. Grass removal decreased early survival of all species and increased stem volume only for one slow‐growing species. The use of plastic mulching increased stem volume for slow‐growing species, whereas fast‐growing species developed larger canopies with that treatment. Effects of grass removal and mulching seem to be very species‐specific and not dependent in growth rank of species, although overall mulching seems to provide better conditions for seedling performance than grass removal alone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号