首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   17篇
  国内免费   39篇
  2024年   2篇
  2023年   3篇
  2022年   3篇
  2021年   4篇
  2020年   8篇
  2019年   6篇
  2018年   8篇
  2017年   7篇
  2016年   9篇
  2015年   6篇
  2014年   15篇
  2013年   16篇
  2012年   4篇
  2011年   11篇
  2010年   13篇
  2009年   8篇
  2008年   12篇
  2007年   9篇
  2006年   15篇
  2005年   3篇
  2004年   14篇
  2003年   10篇
  2002年   10篇
  2001年   7篇
  2000年   10篇
  1999年   2篇
  1997年   1篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1958年   1篇
排序方式: 共有247条查询结果,搜索用时 15 毫秒
1.
Arundo donax L. (Poaceae) is native to Mediterranean Europe and invasive in the Rio Grande Basin of North America. Rhizomes from nine sites in France and Spain infested with a candidate control agent, the armoured scale Rhizaspidiotus donacis (Hemiptera: Diaspididae) weighed 50% less than those from nine sites without scale.  相似文献   
2.
Salt tolerance of the reed plant Phragmites communis   总被引:6,自引:0,他引:6  
Reed plants ( Phragmites communis Trinius) were grown at NaCl concentrations up to 500 m M and their growth, mineral contents and leaf blade osmotic potential were determined. Addition of NaCl up to 300 m M did not affect growth significantly. Sucrose, Cl-and Na+ concentrations in the shoots increased with the salinity of the medium and the shoot water content decreased. K+ always contributed most to the leaf osmotic potential. Even in the presence of 250 m M NaCl in the rooting medium, the leaf blade contained only 50 mM Na+, suggesting that the plants have an efficient mechanism for Na+ exclusion. 22Na+ uptake experiments suggested that the retranslo-cation of absorbed Na+ from shoots to the rooting medium lowered the uptake of Na+.  相似文献   
3.
Rhizome dynamics and resource storage in Phragmites australis   总被引:6,自引:1,他引:5  
Seasonal changes in rhizome concentrations of total nonstructural carbohydrates (TNC), water soluble carbohydrates (WSC), and mineral nutrients (N, P and K) were monitored in two Phragmites australis stands in southern Sweden. Rhizome biomass, rhizome length per unit ground area, and specific weight (weight/ length ratio) of the rhizomes were monitored in one of the stands.Rhizome biomass decreased during spring, increased during summer and decreased during winter. However, changes in spring and summer were small (< 500 g DW m-2) compared to the mean rhizome biomass (approximately 3000 g DW m–2). Winter losses were larger, approximately 1000 g DW m-2, and to a substantial extent involved structural biomass, indicating rhizome mortality. Seasonal changes in rhizome length per unit ground area revealed a rhizome mortality of about 30% during the winter period, and also indicated that an intensive period of formation of new rhizomes occurred in June.Rhizome concentrations of TNC and WSC decreased during the spring, when carbohydrates were translocated to support shoot growth. However, rhizome standing stock of TNC remained large (> 1000 g m–2). Concentrations and standing stocks of mineral nutrients decreased during spring/ early summer and increased during summer/ fall. Only N, however, showed a pattern consistent with a spring depletion caused by translocation to shoots. This pattern indicates sufficient root uptake of P and K to support spring growth, and supports other evidence that N is generally the limiting mineral nutrient for Phragmites.The biomass data, as well as increased rhizome specific weight and TNC concentrations, clearly suggests that reloading of rhizomes with energy reserves starts in June, not towards the end of the growing season as has been suggested previously. This resource allocation strategy of Phragmites has consequences for vegetation management.Our data indicate that carbohydrate reserves are much larger than needed to support spring growth. We propose that large stores are needed to ensure establishment of spring shoots when deep water or stochastic environmental events, such as high rhizome mortality in winter or loss of spring shoots due to late season frost, increase the demand for reserves.  相似文献   
4.
J. M. Caffrey 《Hydrobiologia》1996,340(1-3):259-263
Glyphosate is the active ingredient of the broad-spectrum, translocated herbicide Roundup. Glyphosate is cleared for safe use in or near watercourses, being rated virtually non-toxic by the World Health Organisation. Trials in and alongside Irish fishery watercourses first commenced in 1989 and are continuing to date. The aim of this work is to evaluate the product's efficacy in clearing nuisance reed species in recreational fisheries. The longevity of control and impact on the habitat and its fauna is also investigated. Trials in canal fisheries have demonstrated the capacity of glyphosate to remove obstructive stands of reeds (mainly Schoenoplectus lacustris, Glyceria maxima, Phragmites australis, Sparganium erectum and Typha latifolia), so creating reed-free areas and swims for anglers. These swims remained open for three years following a single application. In 1992 a trial over a 3 km length of the River Boyne, a renowned salmonid fishery, was undertaken. The results clearly demonstrated the ability of glyphosate to provide long-term control of dense (354 shoots m–2) Schoenoplectus infestations in a large watercourse. In the year following, less than one shoot per m2 was present in the channel. In 1994 a small increase in density (7.6 shoots m–2 was recorded, so enabling unobstructed angling in a stretch of river that had been virtually unfishable for years. Trout (Salmo trutta L.) and salmon (Salmo salar L.) also used the newly exposed gravels for spawning in the winter of 1993, thereby improving fish recruitment and production in the fishery.  相似文献   
5.
This paper assesses the chemical and mechanical impact of algal wash (Cladophora, Spirogyra, Chara) upon the lakeside reed belt (Phragmites australis) using field mapping methods, bioassays with Scenedesmus acutus in batch culture, and field experiments. Heavy mats of filamentous algae are correlated with a reduction in number of the outermost reed stalks. The water pressed from decaying heaps of Cladophora and Spirogyra reduced the growth rate of Scenedesmus significantly, but mats from Chara did not. It is assumed that the toxic substance is an organic compound. In field experiments the detrimental effect could not be clearly evidenced. The reasons for this are discussed. It is concluded that mechanical impact is of major importance.  相似文献   
6.
7.
野生田头菇菌株的驯化及其子实体营养成分分析   总被引:1,自引:0,他引:1  
采自湖南洞庭湖大通湖区芦苇湿地的野生菌株,经鉴定为田头菇Agrocybe praecox。通过驯化实现人工栽培,栽培原料以芦苇屑为主,使用液体菌种和覆土栽培方式,初潮菇平均生物转化率为45.6%。营养成分分析表明:以芦苇屑为栽培培养基,子实体中矿物元素含量分别为K(2 190mg/kg)、Fe(16.2mg/kg)、Mg(59.7mg/kg)、Ca(33.4mg/kg),必需氨基酸含量占比高达44.85%,谷氨酸、蛋氨酸、天冬氨酸含量高,是一种高蛋白、低脂肪、高钾低钠的食用菌。  相似文献   
8.
中国西北地区通过大量种植中间锦鸡儿(Caragana liouana)进行生态治理, 在荒漠草原带上形成人工灌丛景观, 改变了生态系统的结构和功能, 影响到地-气水汽循环过程, 研究该人工灌丛群落的蒸散特征, 对揭示其生态水文效应和指导地方生态治理实践具有重要意义。该文以宁夏盐池荒漠草原带上的人工灌丛群落为例, 利用茎流-蒸渗仪法测定了2018年5-8月的灌木蒸腾和丛下蒸散, 并分析了环境因子对人工灌丛群落蒸散的影响。结果表明: (1)茎流-蒸渗仪法所测的群落蒸散与水量平衡法、涡度相关法得到的群落蒸散有较好的一致性, 茎流-蒸渗仪法能适用于荒漠草原带人工灌丛群落蒸散及其组分结构的测定; (2)观测期内晴天的灌木蒸腾速率和丛下蒸散速率日变化趋势相近, 均为单峰曲线, 群落蒸散主要发生在日间, 但灌丛最大蒸腾速率的出现时间比丛下蒸散最大速率的出现时间晚1 h; (3) 5-8月间灌木累积蒸腾为83.6 mm, 日平均蒸腾量为0.7 mm·d-1, 季节变化呈抛物线状; 同期丛下累积蒸散为182.5 mm, 日平均蒸散量为1.5 mm·d-1; 丛下蒸散明显大于灌木蒸腾; (4)观测期间人工灌丛群落累积蒸散266.1 mm, 而同期的降水量为222.6 mm, 陆面水分收支处于亏缺状态; (5)净辐射是影响蒸散最主要、最直接的驱动因素, 且能够影响其他因子进而对人工灌丛群落蒸散产生作用。综上, 人工灌丛引发荒漠草原地带陆面水分收支亏缺的现象, 在生态恢复与重建中须引起注意。  相似文献   
9.
Arundo donax L. has a high biomass production and a tendency toward community dominance in many habitats and thereby a tolerance to a wide range of environmental conditions. Therefore, the present study investigated the potentiality of A. donax to accumulate nutrients and trace metals in its biomass. Six main habitats (Nile Bank, Drain Bank, Canal Bank, Field Edges, Railways and Roadsides) were recognized. At each habitat, six quadrats (each 1 m2), distributed equally in two sites, were selected for growth measurements (e.g., density, shoot height, diameter, leaf area and biomass), plant and soil analyses. Plants from Nile, Canal and Drain Banks had the highest values of most growth measurements, while those from Railways and Roadsides had the lowest. Canal Bank plants accumulated the highest concentrations of P, Cu and Pb in their leaves; Zn in the stem; and Mg, Cd and Fe in the rhizome. The bioaccumulation factor (BF) of A. donax, for Cd, Fe, Mn and Zn, was greater than 1, while the translocation factor (TF) of most trace metals was less than unity in most habitats. In conclusion, A. donax showed morphological plasticity in response to habitat heterogeneity, and its growth was most vigorous in the riparian habitats. The high BF, as well as the significant positive correlations between trace metals, especially Cd, in soil and plant, renders A. donax a powerful phytoremediator.  相似文献   
10.
The major histocompatibility complex (MHC) genes are extremely polymorphic and this variation is assumed to be maintained by balancing selection. Cyclic interactions between pathogens and their hosts could generate such selection, and specific MHC alleles or heterozygosity at certain MHC loci have been shown to confer resistance against particular pathogens. Here we compare the temporal variation in allele frequencies of 23 MHC class I alleles with that of 23 neutral microsatellite markers in adult great reed warblers (a passerine bird) in nine successive cohorts. Overall, the MHC alleles showed a significantly higher variation in allele frequencies between cohorts than the microsatellite alleles, using a multi-variate genetic analysis (amova). The frequency of two specific MHC alleles, A3e (P = 0.046) and B4b (P = 0.0018), varied more between cohorts than expected from random, whereas none of the microsatellite alleles showed fluctuations exceeding the expectation from stochastic variation. These results imply that the variation in MHC allele frequencies between cohorts is not a result of demographic events, but rather an effect of selection favouring different MHC alleles in different years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号