首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17118篇
  免费   1796篇
  国内免费   2128篇
  21042篇
  2024年   78篇
  2023年   442篇
  2022年   477篇
  2021年   700篇
  2020年   720篇
  2019年   813篇
  2018年   692篇
  2017年   608篇
  2016年   689篇
  2015年   694篇
  2014年   759篇
  2013年   1134篇
  2012年   701篇
  2011年   675篇
  2010年   574篇
  2009年   780篇
  2008年   821篇
  2007年   863篇
  2006年   900篇
  2005年   786篇
  2004年   748篇
  2003年   694篇
  2002年   677篇
  2001年   606篇
  2000年   556篇
  1999年   457篇
  1998年   363篇
  1997年   302篇
  1996年   331篇
  1995年   274篇
  1994年   287篇
  1993年   279篇
  1992年   248篇
  1991年   183篇
  1990年   163篇
  1989年   139篇
  1988年   114篇
  1987年   96篇
  1986年   83篇
  1985年   133篇
  1984年   89篇
  1983年   57篇
  1982年   58篇
  1981年   45篇
  1980年   31篇
  1979年   25篇
  1978年   18篇
  1977年   19篇
  1976年   16篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
81.
Preliminary investigations with ethanolic (EtOH) extracts from five Nigerian plants show that extracts of Piper guineense Schum and Thonn (Piperaceae), Cedrela odorata L. (Meliaceae), Dennettia tripetala G. Baker (Annonaceae) and Aframomum melegueta (Rosch) K. Schum (Zingiberaceae) in artificial diets significantly reduced larval growth of European corn borer (ECB), Ostrinia nubilalis Hubner, at a concentration of 1000 ppm (0.1%). An extract of Xylopia aethiopica (Dunal) A. Rich (Annonaceae) was ineffective. When the extracts were subsequently incorporated into artificial diets at 300 ppm and offered to neaonates, larval mortality increased in the order A. melegueta (13%), D. tripetala (13%), P. guineense (27%), and C. odorata (48%). Larval and adult emergence periods increased with increasing concentration of P. guineense, C. odorata and D. tripetala indicating a toxic response. Nutritional indices for habituated third instar larvae with the two most promising plant extracts, P. guineense and C. odorata, showed that the efficiencies of conversion of digested food (ECD) was significantly reduced at 300 ppm suggesting a postdigestive toxicity of the extracts. P. guineense and C. odorata extracts show the best potential for development as botanical insecticides.  相似文献   
82.
The Lycaenidae are the second-largest family of butterflies. From host-plant data collated for more than 1200 species worldwide, large-scale taxonomic, geographical and ecological patterns emerge which suggest that phytochemical similarities and barriers, coupled with phylogenetic conservatism and constraints are key factors governing hostplant use. More than two thirds of the lycaenid species are restricted to one plant family or genus. Affiliations with toxic plants are rare in the Lycaenidae, and excretion rather than sequestration of plant toxins appears to be their usual way of detoxifying host-plant compounds. Flavonoids are frequently sequestered by lycaenid larvae and are subsequently concentrated as pigments in the adults' wings, where they might play a role in visual communication. Mutualistic associations with ants occur in the larvae of more than 50% of the extant Lycaenidae species. Because of a conflict between the nutrient demands of the larvae and the proportion of plant-derived resources allocated to maintain the mutualism with ants, variation in resource quality often translates into variation of mutualistic capacities of the caterpillars, in particular under nutrient stress.  相似文献   
83.
Hydrilla verticillata (L. f.) Royle tubers from monoecious plants andPotamogeton gramineus L. winter buds were sprouted and allowed to grow in the dark for 120 days. We measured plant length and counted the number of leaves at 2–3 day intervals.Hydrilla grew most rapidly during the first 16–17 days andPotamogeton grew most rapidly during the first 16–25 days. Measurement of propagule carbon content over time indicated that cessation of rapid growth coincided with depletion of tuber carbon by one-half forHydrilla. ForPotamogeton, growth was reduced after 16 to 25 days while the winter bud C half-life was 37 days. Calculations indicated thatHydrilla mobilized 49% andPotamogeton 39% of the initial propagule carbon to support growth. In a second experiment, in which plants were grown in substrate the plants grew taller and produced slightly more leaves per plant.Potamogeton removed from darkness after specified time periods, and allowed to grow for 21 days in a greenhouse recovered from 20–30 days in the dark. Similarly treatedHydrilla plants recovered from up to 80 days in the dark.Potamogeton had mobilized 79% of initial C by the time it was unable to recover from the dark treatment. Combined results for both species indicate that the majority of propagule C was utilized in the first 16 to 30 days following sprouting. In conjunction with an understanding propagule sprouting requirements, this information will be useful in the timing of application for management techniques. The U.S. Government right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged. The U.S. Government right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged.  相似文献   
84.
The effects of elevated carbon dioxide (CO2) concentration on plant water use are best evaluated on plants grown under field conditions and with measurement techniques that do not disturb the natural function of the plant. Heat balance sap flow gauges were used on individual main stems of wheat (Triticum aestivum L. cv Yecora rojo) grown under normal ambient conditions (control) and in a free-air CO2 enrichment (FACE) system in Arizona with either high (control + high H2O = CW; FACE + high H2O = FW) or low (control + low H2O = CD; FACE + low H2O = FD) irrigation regimens. Over a 30d period (stem elongation to anthesis), combinations of treatments were monitored with,10–40 gauges per treatment. The effects of increased CO2 on tiller water use were inconsistent in both the diurnal patterns of sap flow and the statistical analyses of daily sap flow (Ftot). Initial results suggested that the reductions in Ftot, from CO2 enrichment were small (,0–10%) in relation to the H2O treatment effect (,20–30%). For a 3d period, Ftot of FW was,19–26% less than that of CW (P = 0.10). Examination of the different sources of variation in the study revealed that the location of gauges within the experimental plots influenced the variance of the sap flow measurements. This variation was probably related to positional variation in subsurface drip lines used to irrigate plots. A sampling design was proposed for use of sap flow gauges in FACE systems with subsurface irrigation that takes into account the main treatment effects of CO2 enrichment and the other sources of variation identified in this study. Despite the small and often statistically non-significant differences in Ftot between the CW and FW treatments, cumulative water use of the FW treatment at the end of the first three test periods ranged from 7 to 23% lower than that of the CW treatment. Differences in sap flow between FW and CW compared well with treatment differences in evapotranspiration. The results of the study, based on the first reported sap flow measurements of wheat, suggest that irrigation requirements for wheat production, in the present climatic regimen of the south-western US, may be predicted to decrease slightly because of increasing atmospheric CO2.  相似文献   
85.
A gene (pMON9617; Chi2;1) identified by screening a tomato pistil cDNA library has been found to encode a protein similar in sequence to class II chitinases. Using a baculovirus expression system we show that the Chi2;1 protein is an active endochitinase. The Chi2;1 protein is most similar in sequence to a previously described stylar chitinase (SK2) isolated from potato. Both proteins lack the diagnostic N-terminal cysteine-rich regions and the C-terminal vacuolar targeting signals of class I chitinases and appear to define a novel type of class II endochitinases associated with flowers. Chi2;1 is expressed predominantly in floral organs and its expression within these organs is temporally regulated. The highest level of expression is found in the transmitting tissue of the style where Chi2;1 mRNA begins to accumulate just prior to anthesis. In vegetative tissue, low levels of Chi2;1 mRNA were detected, and these levels did not increase in response to wounding or treatment with ethephon. mRNA from Chi2;1 orthologs was not detected in most other angiosperms tested, even including some members of the Solanaceae, and it is therefore unlikely that Chi2;1 is essential for stylar function. A fragment containing 1.4 kilobase pairs of 5-flanking DNA from the Chi2;1 gene was shown to drive high-level expression of an attached reporter gene in the styles of transgenic tomatoes. This fragment has utility for engineering expression of other coding regions in styles.  相似文献   
86.
The circumstances that led to the discovery that plants luminesce after they are illuminated are described, as are other discoveries that would not have been possible were it not for the fortuitous association I had with my dear and most admirable friend, W.A. Arnold, to whom this special issue is dedicated.  相似文献   
87.
88.
Basal leaves frequently senesce before anthesis in high population density crops. This paper evaluates the hypothesis that quantitative and qualitative changes in the light environment associated with a high leaf area index (LAI) trigger leaf senescence in sunflower ( Helianthus annuus L.) canopies. Mean leaf duration (LD, time from achievement of maximum leaf area) of leaf 8 was significantly ( P < 0.05) reduced from 51 to 19 days as crop population density was increased from 0.47 to 4.76 plants m−2. High compared to low plant population density was associated with earlier reduction in the photosynthetically active radiation (PAR) and red/far-red ratio (R/FR) reaching the target leaf. However the changes in R/FR preceded those in PAR. When the light environment of individual leaves of isolated plants growing under field conditions was manipulated using filters and FR-reflecting mirrors, LD was positively and linearly related with the mean daily PAR (MDR) received in the FR- (no FR enrichment) treatments. FR enrichment of light reaching the abaxial surface of the leaf significantly ( P < 0.05) reduced LD by 9 days at intermediate PAR levels with respect to FR-controls, but did not affect LD at the maximum PAR used in these experiments. However, when light reaching both leaf surfaces was enriched with FR, LD (for leaves receiving maximum PAR) was 13 days shorter than that of the FR- control. These results show that basal leaf senescence in sunflower is enhanced both by a decrease in PAR and by a decrease in R/FR.  相似文献   
89.
The current study investigated the short-term physiological implications of plant nitrogen uptake of urea amended with the urease inhibitor N-(n-butyl) thiophosphoric triamide (nBTPT) under both greenhouse and field conditions. 15N labelled urea amended with 0.0, 0.01, 0.1 and 0.5% nBTPT (w/w) was surface applied at a rate equivalent to 100 kg N ha–1 to perennial ryegrass in a greenhouse pot experiment. Root, shoot and soil fractions were destructively harvested 0.75, 1.75, 4, 7 and 10 days after fertilizer application. Urease activity was determined in each fraction together with 15N recovery and a range of chemical analyses. The effect of nBTPT amended urea on leaf tip scorch was evaluated together with the effect of the inhibitor applied on its own on plant urease activity.nBTPT-amended urea dramatically reduced shoot urease activity for the first few days after application compared to unamended urea. The higher the nBTPT concentration the longer the time required for shoot activity to return to that in the unamended treatment. At the highest inhibitor concentration of 0.5% shoot urease activity had returned to that of unamended urea by 10 days. Root urease activity was unaffected by nBTPT in the presence of urea but was affected by nBTPT in the absence of urea.Transient leaf tip scorch was observed approximately 7–15 days after nBTPT + urea application and was greatest with high concentrations of nBTPT and high urea-N application rates. New developing leaves showed no visual sign of tip necrosis.Urea hydrolysis of unamended urea was rapid with only 1.3% urea-N remaining in the soil after 1.75 days. N uptake and metabolism by ryegrass was rapid with 15N recovery from unamended urea, in the plant (shoot + root) being 33% after 1.75 days. Most of the 15N in the soil following the urea+0.5% nBTPT application was still as urea after 1.75 days, yet 15N plant recovery at this time was 25% (root+shoot). This together with other evidence, suggests that if urea hydrolysis in soil is delayed by nBTPT then urea can be taken up by ryegrass as the intact molecule, albeit at a significantly slower initial rate of uptake than NH4 +-N. Protein and water soluble carbohydrate content of the plant were not significantly affected by amending urea with nBTPT however, there was a significant effect on the composition of amino acids in the roots and shoots, suggesting a difference in metabolism.Although nBTPT-amended urea affected plant urease activity and caused some leaf-tip scorch the effects were transient and short-lived. The previously reported benefit of nBTPT in reducing NH3 volatilization of urea would appear to far outweigh any of the observed short-term effects, as dry-matter production of ryegrass is increased.  相似文献   
90.
Different submodels within complex model packages on N regimes-for plant N-uptake, net N-mineralization, nitrate leaching and microbial N immobilization-are critically reviewed mainly with regard to their prediction ability on the basis of three comparative papers. Only for some of the processes adequate statistical evaluation of the models was possible. Compared to the other statistically evaluable process, nitrate leaching, modeling of plant N-uptake yields the better results. Most models for mineralization use arbitrary approaches rather than empirical ones. Although only approximate estimates of N mineralisation were at hand, the models generally behave expectedly poor. Only one model-DAISY-out of 16 involved in the comparison uses an explicit microbial biomass sub-model including microbial growth, decline and maintenance terms. So DAISY is the only model coupling C and N cycles. But what is true for an individual model describing the C and N transformation of a lab incubation experiment seems to be valid for most of the complex simulation work on the C and N regimes: this model was said to be overparameterized with respect to the available data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号