首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17421篇
  免费   1843篇
  国内免费   2119篇
  2024年   38篇
  2023年   422篇
  2022年   423篇
  2021年   698篇
  2020年   741篇
  2019年   842篇
  2018年   706篇
  2017年   618篇
  2016年   708篇
  2015年   711篇
  2014年   764篇
  2013年   1199篇
  2012年   723篇
  2011年   707篇
  2010年   588篇
  2009年   801篇
  2008年   836篇
  2007年   868篇
  2006年   907篇
  2005年   822篇
  2004年   769篇
  2003年   708篇
  2002年   697篇
  2001年   615篇
  2000年   570篇
  1999年   460篇
  1998年   370篇
  1997年   303篇
  1996年   333篇
  1995年   281篇
  1994年   291篇
  1993年   277篇
  1992年   246篇
  1991年   185篇
  1990年   167篇
  1989年   140篇
  1988年   112篇
  1987年   100篇
  1986年   82篇
  1985年   136篇
  1984年   97篇
  1983年   61篇
  1982年   62篇
  1981年   44篇
  1980年   27篇
  1979年   20篇
  1978年   20篇
  1977年   23篇
  1976年   16篇
  1973年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Several plant isoquinoline alkaloids (PIAs) possess powerful pharmaceutical and biotechnological properties. Thus, PIA metabolism and its fascinating molecules, including morphine, colchicine and galanthamine, have attracted the attention of both the industry and researchers involved in plant science, biochemistry, chemical bioengineering and medicine. Currently, access and availability of high‐value PIAs [commercialized (e.g. galanthamine) or not (e.g. narciclasine)] is limited by low concentration in nature, lack of cultivation or geographic access, seasonal production and risk of overharvesting wild plant species. Nevertheless, most commercial PIAs are still extracted from plant sources. Efforts to improve the production of PIA have largely been impaired by the lack of knowledge on PIA metabolism. With the development and integration of next‐generation sequencing technologies, high‐throughput proteomics and metabolomics analyses and bioinformatics, systems biology was used to unravel metabolic pathways allowing the use of metabolic engineering and synthetic biology approaches to increase production of valuable PIAs. Metabolic engineering provides opportunity to overcome issues related to restricted availability, diversification and productivity of plant alkaloids. Engineered plant, plant cells and microbial cell cultures can act as biofactories by offering their metabolic machinery for the purpose of optimizing the conditions and increasing the productivity of a specific alkaloid. In this article, is presented an update on the production of PIA in engineered plant, plant cell cultures and heterologous micro‐organisms.  相似文献   
962.
The transgenic Bt cotton plant has been widely planted throughout the world for the control of cotton budworm Helicoverpa armigera (Hubner). However, a shift towards insect tolerance of Bt cotton is now apparent. In this study, the gene encoding neuropeptide F (NPF) was cloned from cotton budworm H. armigera, an important agricultural pest. The npf gene produces two splicing mRNA variants—npf1 and npf2 (with a 120‐bp segment inserted into the npf1 sequence). These are predicted to form the mature NPF1 and NPF2 peptides, and they were found to regulate feeding behaviour. Knock down of larval npf with dsNPF in vitro resulted in decreases of food consumption and body weight, and dsNPF also caused a decrease of glycogen and an increase of trehalose. Moreover, we produced transgenic tobacco plants transiently expressing dsNPF and transgenic cotton plants with stably expressed dsNPF. Results showed that H. armigera larvae fed on these transgenic plants or leaves had lower food consumption, body size and body weight compared to controls. These results indicate that NPF is important in the control of feeding of H. armigera and valuable for production of potential transgenic cotton.  相似文献   
963.
The rat ErbB2 (rErbB2) protein is a 185‐kDa glycoprotein belonging to the epidermal growth factor‐related proteins (ErbB) of receptor tyrosine kinases. Overexpression and mutations of ErbB proteins lead to several malignancies including breast, lung, pancreatic, bladder and ovary carcinomas. ErbB2 is immunogenic and is an ideal candidate for cancer immunotherapy. We investigated the possibility of expressing the extracellular (EC) domain of rErbB2 (653 amino acids, aa) in Nicotiana benthamiana plants, testing the influence of the 23 aa transmembrane (TM) sequence on protein accumulation. Synthetic variants of the rErbB2 gene portion encoding the EC domain, optimized with a human codon usage and either linked to the full TM domain (rErbB2_TM, 676 aa), to a portion of it (rErbB2‐pTM, 662 aa), or deprived of it (rErbB2_noTM, 653 aa) were cloned in the pEAQ‐HT expression vector as 6X His tag fusions. All rErbB2 variants (72–74.5 kDa) were transiently expressed, but the TM was detrimental for rErbB2 EC accumulation. rERbB2_noTM was the most expressed protein; it was solubilized and purified with Nickel affinity resin. When crude soluble extracts expressing rErbB2_noTM were administered to BALB/c mice, specific rErbB2 immune responses were triggered. A potent antitumour activity was induced when vaccinated mice were challenged with syngeneic transplantable ErbB2+ mammary carcinoma cells. To our knowledge, this is the first report of expression of rErbB2 in plants and of its efficacy in inducing a protective antitumour immune response, opening interesting perspectives for further immunological testing.  相似文献   
964.
965.
For the production of therapeutic proteins in plants, the presence of β1,2‐xylose and core α1,3‐fucose on plants’ N‐glycan structures has been debated for their antigenic activity. In this study, RNA interference (RNAi) technology was used to down‐regulate the endogenous N‐acetylglucosaminyltransferase I (GNTI) expression in Nicotiana benthamiana. One glyco‐engineered line (NbGNTI‐RNAi) showed a strong reduction of plant‐specific N‐glycans, with the result that as much as 90.9% of the total N‐glycans were of high‐mannose type. Therefore, this NbGNTI‐RNAi would be a promising system for the production of therapeutic glycoproteins in plants. The NbGNTI‐RNAi plant was cross‐pollinated with transgenic N. benthamiana expressing human glucocerebrosidase (GC). The recombinant GC, which has been used for enzyme replacement therapy in patients with Gaucher's disease, requires terminal mannose for its therapeutic efficacy. The N‐glycan structures that were presented on all of the four occupied N‐glycosylation sites of recombinant GC in NbGNTI‐RNAi plants (GCgnt1) showed that the majority (ranging from 73.3% up to 85.5%) of the N‐glycans had mannose‐type structures lacking potential immunogenic β1,2‐xylose and α1,3‐fucose epitopes. Moreover, GCgnt1 could be taken up into the macrophage cells via mannose receptors, and distributed and taken up into the liver and spleen, the target organs in the treatment of Gaucher's disease. Notably, the NbGNTI‐RNAi line, producing GC, was stable and the NbGNTI‐RNAi plants were viable and did not show any obvious phenotype. Therefore, it would provide a robust tool for the production of GC with customized N‐glycan structures.  相似文献   
966.
The long juvenile period of citrus trees (often more than 6 years) has hindered genetic improvement by traditional breeding methods and genetic studies. In this work, we have developed a biotechnology tool to promote transition from the vegetative to the reproductive phase in juvenile citrus plants by expression of the Arabidopsis thaliana or citrus FLOWERING LOCUS T (FT) genes using a Citrus leaf blotch virus‐based vector (clbvINpr‐AtFT and clbvINpr‐CiFT, respectively). Citrus plants of different genotypes graft inoculated with either of these vectors started flowering within 4–6 months, with no alteration of the plant architecture, leaf, flower or fruit morphology in comparison with noninoculated adult plants. The vector did not integrate in or recombine with the plant genome nor was it pollen or vector transmissible, albeit seed transmission at low rate was detected. The clbvINpr‐AtFT is very stable, and flowering was observed over a period of at least 5 years. Precocious flowering of juvenile citrus plants after vector infection provides a helpful and safe tool to dramatically speed up genetic studies and breeding programmes.  相似文献   
967.
968.
969.
Protein poly(ADP‐ribosyl)ation (PARylation) primarily catalyzed by poly(ADP‐ribose) polymerases (PARPs) plays a crucial role in controlling various cellular responses. However, PARylation targets and their functions remain largely elusive. Here, we deployed an Arabidopsis protein microarray coupled with in vitro PARylation assays to globally identify PARylation targets in plants. Consistent with the essential role of PARylation in plant immunity, the forkhead‐associated (FHA) domain protein DAWDLE (DDL), one of PARP2 targets, positively regulates plant defense to both adapted and non‐adapted pathogens. Arabidopsis PARP2 interacts with and PARylates DDL, which was enhanced upon treatment of bacterial flagellin. Mass spectrometry and mutagenesis analysis identified multiple PARylation sites of DDL by PARP2. Genetic complementation assays indicate that DDL PARylation is required for its function in plant immunity. In contrast, DDL PARylation appears to be dispensable for its previously reported function in plant development partially mediated by the regulation of microRNA biogenesis. Our study uncovers many previously unknown PARylation targets and points to the distinct functions of DDL in plant immunity and development mediated by protein PARylation and small RNA biogenesis, respectively.  相似文献   
970.
In light of extensive human impact on wetlands it is necessary that we develop an effective way to monitor the effects of impact in order to prevent further destruction. One method is plant community assessment, specifically Floristic Quality Assessment (FQA), which is common, but can be subjective. In this case study, we implement FQA, as well as specific morphological and chemical assessment measures over a two-year period in order to compare two wetlands in the Lake George watershed in the Adirondack mountains and their response to human impact. While the wetlands studied demonstrated very different water chemistry profiles makeups, FQA did not reveal substantial differences between plant communities. However, more specific analyses of plant morphology and tissue chemistry did reveal significant differences that reflected the level of impact at these two sites. Namely, the simple plant Lemna minor had consistently shorter roots and Nuphar lutea contained higher amounts of nitrogen in above ground tissues when growing in an anthropogenically impacted wetland. We suggest that FQA and specific plant morphology and tissue chemistry measurements be performed concurrently to provide indication of both long- and short-term effects of human impact in wetland ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号