首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1838篇
  免费   86篇
  国内免费   36篇
  2023年   8篇
  2022年   20篇
  2021年   17篇
  2020年   26篇
  2019年   38篇
  2018年   39篇
  2017年   24篇
  2016年   27篇
  2015年   34篇
  2014年   42篇
  2013年   93篇
  2012年   32篇
  2011年   34篇
  2010年   39篇
  2009年   69篇
  2008年   60篇
  2007年   53篇
  2006年   57篇
  2005年   54篇
  2004年   52篇
  2003年   50篇
  2002年   36篇
  2001年   52篇
  2000年   41篇
  1999年   36篇
  1998年   29篇
  1997年   38篇
  1996年   33篇
  1995年   35篇
  1994年   37篇
  1993年   45篇
  1992年   48篇
  1991年   44篇
  1990年   48篇
  1989年   54篇
  1988年   44篇
  1987年   45篇
  1986年   44篇
  1985年   57篇
  1984年   54篇
  1983年   41篇
  1982年   56篇
  1981年   42篇
  1980年   25篇
  1979年   25篇
  1978年   25篇
  1977年   17篇
  1976年   20篇
  1974年   4篇
  1971年   5篇
排序方式: 共有1960条查询结果,搜索用时 31 毫秒
991.
The omphalallantoic placenta is a complex organ that is unique to viviparous squamates. Using transmission EM and light microscopy, we examined this placenta in garter snakes in order to understand its structural organization and functional capabilities. The omphalallantoic placenta is formed from the uterine lining and the bilaminar omphalopleure, the latter of which is associated with the isolated yolk mass and allantois. A thin shell membrane separates the fetal and maternal tissues throughout gestation. The uterine epithelium contains cuboidal cells with large droplets or granules and appears to be secretory. Epithelium of the omphalopleure is specialized for absorption and contains cells with prominent microvilli and others with large cytoplasmic droplets or granules. The brush-border cells are rich in mitochondria and Golgi bodies and interdigitate extensively with adjacent cells, forming elaborate intercellular canaliculi. Their morphology is consistent with their proposed role in sodium-coupled water movement. During development, the isolated yolk mass becomes depleted as yolk droplets are digested by cells of the omphalopleure and allantois. However, the allantois does not fuse to or vascularize the inner face of the omphalopleure. Consequently, the distance between fetal and maternal circulatory systems remains large (about 250-300 microm), precluding efficient gas exchange and hemotrophic transfer. The morphology of the omphalallantoic placenta strongly suggests that it functions in nutrient transfer through uterine secretion and fetal absorption.  相似文献   
992.
A balance between fission and fusion events determines the morphology of mitochondria. In yeast, mitochondrial fission is regulated by the outer membrane-associated dynamin-related GTPase, Dnm1p. Mitochondrial fusion requires two integral outer membrane components, Fzo1p and Ugo1p. Interestingly, mutations in a second mitochondrial-associated dynamin-related GTPase, Mgm1p, produce similar phenotypes to fzo1 and ugo cells. Specifically, mutations in MGM1 cause mitochondrial fragmentation and a loss of mitochondrial DNA that are suppressed by abolishing DNM1-dependent fission. In contrast to fzo1ts mutants, blocking DNM1-dependent fission restores mitochondrial fusion in mgm1ts cells during mating. Here we show that blocking DNM1-dependent fission in Deltamgm1 cells fails to restore mitochondrial fusion during mating. To examine the role of Mgm1p in mitochondrial fusion, we looked for molecular interactions with known fusion components. Immunoprecipitation experiments revealed that Mgm1p is associated with both Ugo1p and Fzo1p in mitochondria, and that Ugo1p and Fzo1p also are associated with each other. In addition, genetic analysis of specific mgm1 alleles indicates that Mgm1p's GTPase and GTPase effector domains are required for its ability to promote mitochondrial fusion and that Mgm1p self-interacts, suggesting that it functions in fusion as a self-assembling GTPase. Mgm1p's localization within mitochondria has been controversial. Using protease protection and immuno-EM, we have shown previously that Mgm1p localizes to the intermembrane space, associated with the inner membrane. To further test our conclusions, we have used a novel method using the tobacco etch virus protease and confirm that Mgm1p is present in the intermembrane space compartment in vivo. Taken together, these data suggest a model where Mgm1p functions in fusion to remodel the inner membrane and to connect the inner membrane to the outer membrane via its interactions with Ugo1p and Fzo1p, thereby helping to coordinate the behavior of the four mitochondrial membranes during fusion.  相似文献   
993.
In the present study a polystyrene microtiter plate was tested as a support material for synaptic plasma membrane (SPM) immobilization by adsorption. The adsorption was carried out by an 18-h incubation at +4°C of SPM with a polystyrene matrix, at pH 7.4. Evaluation of the efficiency of the applied immobilization method revealed that 10% protein fraction of initially applied SPM was bound to the support and that two SPM enzymes, Na+/K+-ATPase and Mg2+-ATPase, retained 70–80% activity after the adsorption. In addition, adsorption stabilizes Na+/K+-ATPase and Mg2+-ATPase, since the activities are substantial 3 weeks after the adsorption. Parallel kinetic analysis showed that adsorption does not alter significantly the kinetic properties of Na+/K+-ATPase and Mg2+-ATPase and their sensitivity to and mechanism of Cd2+- or Hg2+-induced inhibition. The only exception is the “high affinity” Mg2+-ATPase moiety, whose affinity for ATP and sensitivity toward Cd2+ were increased by the adsorption. The results show that such system may be used as a practical and comfortable model for the in vitro toxicological investigations.  相似文献   
994.
The mammalian fatty acid-binding proteins (FABPs) are thought to be important for the transport and metabolism of fatty acids in numerous cell types. The transfer of FA from different members of the FABP family to membranes has been shown to occur by two distinct mechanisms, an aqueous diffusion-based mechanism and a collisional mechanism, wherein the FABP interacts directly with membrane acceptors. Much of the work that underlies this concept comes from efforts using rodent FABPs. Given the increasing awareness of links between FABPs and several chronic diseases in humans, it was important to establish the mechanisms of FA transfer for human FABPs. In the present studies, we examined the rate and mechanism of fatty acid transfer from four pairs of human and rodent (rat or mouse, as specified) FABPs: hLFABP and rLFABP, hIFABP and rIFABP, hHFABP and rHFABP, and hAFABP and mAFABP. In the case of human IFABP, both the Ala54 and Thr54 forms were examined. The results show clearly that for all FABPs examined, the mechanisms of ligand transfer observed for rodent proteins hold true for their human counterparts. Moreover, it appears that the Ala to Thr substitution at residue 54 of the human IFABP does not alter the fundamental mechanism of ligand transfer to membranes, but nevertheless causes a consistent decrease in the rate of transfer.  相似文献   
995.
We have previously shown that peptide neurotensin inhibits cerebral cortex synaptosomal membrane Na+, K+-ATPase, an effect fully prevented by blockade of neurotensin NT1 receptor by antagonist SR 48692. The work was extended to analyze neurotensin effect on Na+, K+-ATPase activity present in other synaptosomal membranes and in CNS myelin and mitochondrial fractions. Results indicated that, besides inhibiting cerebral cortex synaptosomal membrane Na+, K+-ATPase, neurotensin likewise decreased enzyme activity in homologous striatal membranes as well as in a commercial preparation obtained from porcine cerebral cortex. However, the peptide failed to alter either Na+, K+-ATPase activity in cerebellar synaptosomal and myelin membranes or ATPase activity in mitochondrial preparations. Whenever an effect was recorded with the peptide, it was blocked by antagonist SR 48692, indicating the involvement of the high affinity neurotensin receptor (NT1), as well as supporting the contention that, through inhibition of ion transport at synaptic membrane level, neurotensin plays a regulatory role in neurotransmission.  相似文献   
996.
Effects of GABA, glycine, acetylcholine, and glutamate (agonists of the GABAa/benzodiazepine, glycine, choline, and glutamate receptors, respectively) at concentrations in the range 10–8-10–4 M on the activity of basal Mg2+-ATPase of the plasma membrane fraction from bream brain and on its activation by Cl were investigated. GABA and glycine activated basal Mg2+-ATPase activity and suppressed its activation by Cl. Acetylcholine and glutamate activated basal Mg2+-ATPase to a lesser extent and did not suppress the activation of the enzyme by Cl.The activation of basal Mg2+-ATPase by neuromediators was decreased by blockers of the corresponding receptors (picrotoxin, strychnine, benztropine mesylate, and D-2-amino-5-phosphonovaleric acid). In addition, picrotoxin and strychnine eliminated the inhibiting effect of GABA and glycine, respectively, on the Cl-stimulated Mg2+-ATPase activity. Agonists of the GABAa/benzodiazepine receptor–phenazepam (10–8-10–4 M) and pentobarbital (10–6-10–3 M)–activated the basal Mg2+-ATPase activity and decreased the Cl-stimulated Mg2+-ATPase activity. The dependence of both enzyme activities on ligand concentration is bell-shaped. Moreover, phenazepam and pentobarbital increased the basal Mg2+-ATPase activity in the presence of 10–7 M GABA and did not influence it in the presence of 10–4 M GABA and 10–6 M glycine. The data suggest that in the fish brain membranes the Cl-stimulated Mg2+-ATPase interacts with GABAa/benzodiazepine and glycine receptors but not with m-choline and glutamate receptors.  相似文献   
997.
Although protein fouling is a critical factor governing the performance of microfiltration systems, there have been relatively few studies comparing the fouling behavior of different proteins. Flux-decline data were obtained for the filtration of bovine serum albumin, lysozyme, pepsin, immunoglobulin G, and myoglobin through polycarbonate track-etch membranes. The data were analyzed using a recently developed model that accounts for simultaneous pore blockage and cake formation. The model was in very good agreement with the data for all five proteins, demonstrating the general applicability of this new theoretical framework. The initial fouling due to pore blockage is directly related to the concentration of protein aggregates in solution, which was measured independently by quasi-elastic light scattering. The results provide important insights into the mechanisms of protein fouling during microfiltration.  相似文献   
998.
Here, we show that efficient transport of membrane and secretory proteins from the ER of Saccharomyces cerevisiae requires concentrative and signal-mediated sorting. Three independent markers of bulk flow transport out of the ER indicate that in the absence of an ER export signal, molecules are inefficiently captured into coat protein complex II (COPII)-coated vesicles. A soluble secretory protein, glycosylated pro-alpha-factor (gpalphaf), was enriched approximately 20 fold in these vesicles relative to bulk flow markers. In the absence of Erv29p, a membrane protein that facilitates gpalphaf transport (Belden and Barlowe, 2001), gpalphaf is packaged into COPII vesicles as inefficiently as soluble bulk flow markers. We also found that a plasma membrane protein, the general amino acid permease (Gap1p), is enriched approximately threefold in COPII vesicles relative to membrane phospholipids. Mutation of a diacidic sequence present in the COOH-terminal cytosolic domain of Gap1p eliminated concentrative sorting of this protein.  相似文献   
999.
13C NMR spectra routinely performed on oriented lipid bilayers display linewidth of 1–2 ppm, although T2 measurements indicate that 0.1–0.2 ppm could be obtained. We have prepared a DMPC – 13C4-cholesterol (7/3) sample, and oriented the lipid bilayers between glass plates so that the bilayer normal makes an angle of 90° (or of the magic angle) with B0. We have measured T2s, CSAs, and linewidths for the choline 13C--methyl, the cholesterol-C4 carbons and the lipid head group phosphorus, at both angles and 313 K. The magnetic field distribution within the sample was calculated using the surface current formalism. The line shapes were simulated as a function of B0 field inhomogeneities and sample mosaic spread. Both effects contribute to the experimental linewidth. Using three signals of different CSA, we have quantified both contributions and measured the mosaic spread accurately. Direct shimming on a sample signal is essential to obtain sharp resonances and 13C labelled choline methyl resonance of DMPC is a good candidate for this task. After optimisation of the important parameters (shimming on the choline resonance, mosaic spread of ±0.30° ), 13C linewidth of 0.2–0.3 ppm have been obtained. This newly achieved resolution on bilayers oriented at 90°, has allowed to perform two 2D experiments, with a good sensitivity: 2D PELF (correlation of carbon chemical shifts and C-H dipolar couplings) and 2D D-resolved experiment (correlation of carbon chemical shifts and C-C dipolar couplings). A C-C dipolar coupling of 35 ± 2 Hz between the choline methyl carbons was determined.  相似文献   
1000.
The organization of carbonic anhydrase (CA) system in halo- and alkalophilic cyanobacteria Rhabdoderma lineare was studied by Western blot analysis and immunocytochemical electron microscopy. The presence of extracellular -CA (60 kD) in the glycocalyx, forming a tight sheath around the cell, and of two intracellular -CA is reported. One -CA (60 kD) is associated with polypeptides of photosystem II (PSII) and is a constitutive enzyme. Another -carbonic anhydrase (25 kD) was induced by low content of bicarbonate in the culture medium; this inducible CA was found in the fraction of total soluble proteins. The expressed synthesis of inducible -CA was accompanied by the increase in the intracellular pool of inorganic carbon, which suggests an important role of this enzyme in the functioning of CO2-concentrating mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号