首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72512篇
  免费   5035篇
  国内免费   2641篇
  80188篇
  2024年   138篇
  2023年   1219篇
  2022年   1809篇
  2021年   2414篇
  2020年   2350篇
  2019年   3263篇
  2018年   2837篇
  2017年   2034篇
  2016年   2010篇
  2015年   2513篇
  2014年   4741篇
  2013年   5893篇
  2012年   3654篇
  2011年   4691篇
  2010年   3572篇
  2009年   3868篇
  2008年   3941篇
  2007年   3968篇
  2006年   3518篇
  2005年   3053篇
  2004年   2704篇
  2003年   2146篇
  2002年   1927篇
  2001年   1228篇
  2000年   951篇
  1999年   972篇
  1998年   976篇
  1997年   764篇
  1996年   684篇
  1995年   613篇
  1994年   566篇
  1993年   431篇
  1992年   432篇
  1991年   356篇
  1990年   293篇
  1989年   241篇
  1988年   211篇
  1987年   184篇
  1986年   161篇
  1985年   272篇
  1984年   456篇
  1983年   337篇
  1982年   347篇
  1981年   265篇
  1980年   201篇
  1979年   194篇
  1978年   172篇
  1977年   143篇
  1976年   115篇
  1975年   108篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
β‐Glucosidases (BG) are present in many plant tissues. Among these, abscisic acid (ABA) β‐glucosidases are thought to take part in the adjustment of cellular ABA levels, however the role of ABA‐BG in fruits is still unclear. In this study, through RNA‐seq analysis of persimmon fruit, 10 full‐length DkBG genes were isolated and were all found to be expressed. In particular, DkBG1 was highly expressed in persimmon fruits with a maximum expression 95 days after full bloom (DAFD). We verified that, in vitro, DkBG1 protein can hydrolyze ABA‐glucose ester (ABA‐GE) to release free ABA. Compared with wild‐type, tomato plants that overexpressed DkBG1 significantly upregulated the expression of ABA receptor PYL3/7 genes and showed typical symptoms of ABA hypersensitivity in fruits. DkBG1 overexpression (DkBG1‐OE) accelerated fruit ripening onset by 3–4 days by increasing ABA levels at the pre‐breaker stage and induced early ethylene release compared with wild‐type fruits. DkBG1‐OE altered the expression of ripening regulator NON‐RIPENING (NOR) and its target genes; this in turn altered fruit quality traits such as coloration. Our results demonstrated that DkBG1 plays an important role in fruit ripening and quality by adjusting ABA levels via hydrolysis of ABA‐GE.  相似文献   
952.
Despite an initial response to EGFR tyrosine kinase inhibitors (EGFR-TKI) in EGFR mutant lung cancer, most patients eventually become resistant and result in treatment failure. Recent studies have shown that epithelial to mesenchymal transition (EMT) is associated with drug resistance and cancer cell metastasis. Strong multiple gene signature data indicate that EMT acts as a determinant of insensitivity to EGFR-TKI. However, the exact mechanism for the acquisition of the EMT phenotype in EGFR-TKI resistant lung cancer cells remains unclear. In the present study, we showed that the expression of Notch-1 was highly upregulated in gefitinib-resistant PC9/AB2 lung cancer cells. Notch-1 receptor intracellular domain (N1IC), the activated form of the Notch-1 receptor, promoted the EMT phenotype in PC9 cells. Silencing of Notch-1 using siRNA reversed the EMT phenotype and restored sensitivity to gefitinib in PC9/AB2 cells. Moreover, Notch-1 reduction was also involved in inhibition of anoikis as well as colony-formation activity of PC9/AB2 cells. Taken together, these results provide strong molecular evidence that gefitinib-acquired resistance in lung cancer cells undergoing EMT occurs through activation of Notch-1 signaling. Thus, inhibition of Notch-1 can be a novel strategy for the reversal of the EMT phenotype thereby potentially increasing therapeutic drug sensitivity to lung cancer cells.  相似文献   
953.
When the gibberellin (GA) receptor GIBBERELLIN INSENSITIVE DWARF 1 (GID1) binds to GA, GID1 interacts with DELLA proteins, repressors of GA signaling. This interaction inhibits the suppressive function of DELLA protein and thereby activates the GA response. However, how DELLA proteins exert their suppressive function and how GID1s inhibit suppressive function of DELLA proteins is unclear. By yeast one-hybrid experiments and transient expression of the N-terminal region of rice DELLA protein (SLR1) in rice callus, we established that the N-terminal DELLA/TVHYNP motif of SLR1 possesses transactivation activity. When SLR1 proteins with various deletions were over-expressed in rice, the severity of dwarfism correlated with the transactivation activity observed in yeast, indicating that SLR1 suppresses plant growth through transactivation activity. This activity was suppressed by the GA-dependent GID1-SLR1 interaction, which may explain why GA responses are induced in the presence of GA. The C-terminal GRAS domain of SLR1 also exhibits a suppressive function on plant growth, possibly by directly or indirectly interacting with the promoter region of target genes. Our results indicate that the N-terminal region of SLR1 has two roles in GA signaling: interaction with GID1 and transactivation activity.  相似文献   
954.
955.
ERCC1-XPF is a heterodimeric, structure-specific endonuclease that cleaves single-stranded/double-stranded DNA junctions and has roles in nucleotide excision repair (NER), interstrand crosslink (ICL) repair, homologous recombination, and possibly other pathways. In NER, ERCC1-XPF is recruited to DNA lesions by interaction with XPA and incises the DNA 5' to the lesion. We studied the role of the four C-terminal DNA binding domains in mediating NER activity and cleavage of model substrates. We found that mutations in the helix-hairpin-helix domain of ERCC1 and the nuclease domain of XPF abolished cleavage activity on model substrates. Interestingly, mutations in multiple DNA binding domains were needed to significantly diminish NER activity in vitro and in vivo, suggesting that interactions with proteins in the NER incision complex can compensate for some defects in DNA binding. Mutations in DNA binding domains of ERCC1-XPF render cells more sensitive to the crosslinking agent mitomycin C than to ultraviolet radiation, suggesting that the ICL repair function of ERCC1-XPF requires tighter substrate binding than NER. Our studies show that multiple domains of ERCC1-XPF contribute to substrate binding, and are consistent with models of NER suggesting that multiple weak protein-DNA and protein-protein interactions drive progression through the pathway. Our findings are discussed in the context of structural studies of individual domains of ERCC1-XPF and of its role in multiple DNA repair pathways.  相似文献   
956.
The proteomic response to bacterial infection in a teleost fish (Paralichthys olivaceus) infected with Streptococcus parauberis was analyzed using label-free protein quantitation coupled with LC-MS(E) tandem mass spectrometry. A total of 82 proteins from whole kidney, a major lymphoid organ in this fish, were found to be differentially expressed between healthy and diseased fish analyzed 6, 24, 72 and 120 h post-infection. Among the differentially expressed proteins, those involved in mediating immune responses (e.g., heat shock proteins, cathepsins, goose-type lysozyme and complement components) were most significantly up-regulated by infection. In addition, cell division cycle 48 (CDC48) and calreticulin, which are associated with cellular recovery and glycoprotein synthesis, were up-regulated in the universal protein group, whereas the other proteins in that group were down-regulated. There was continuous activation of expression of immune-associated proteins during infection, but there was also loss of expression of proteins not involved in immune function. We expect that our findings regarding immune response at the protein level would offer new insight into the systemic response to bacterial infection of a major immune organ in teleost fish.  相似文献   
957.
Recently, it was identified that Pseudomonas aeruginosa competes with rival cells to gain a growth advantage using a novel mechanism that includes two interrelated processes as follows: employing type VI secretion system (T6SS) virulence effectors to lyse other bacteria, and at the same time producing specialized immunity proteins to inactivate their cognate effectors for self-protection against mutual toxicity. To explore the structural basis of these processes in the context of functional performance, the crystal structures of the T6SS virulence effector Tse1 and its complex with the corresponding immunity protein Tsi1 were determined, which, in association with mutagenesis and Biacore analyses, provided a molecular platform to resolve the relevant structural questions. The results indicated that Tse1 features a papain-like structure and conserved catalytic site with distinct substrate-binding sites to hydrolyze its murein peptide substrate. The immunity protein Tsi1 interacts with Tse1 via a unique interactive recognition mode to shield Tse1 from its physiological substrate. These findings reveal both the structural mechanisms for bacteriolysis and the self-protection against the T6SS effector Tse1. These mechanisms are significant not only by contributing to a novel understanding of niche competition among bacteria but also in providing a structural basis for antibacterial agent design and the development of new strategies to fight P. aeruginosa.  相似文献   
958.
翟睿  霍立军 《生命科学》2012,(3):292-296
Aurora蛋白激酶A及Polo样蛋白激酶1(PLK在)作为重要的细胞周期调节蛋白可参与调控纺锤体组装、有丝分裂等细胞进程,但其激活机制及在有丝分裂中的作用机制仍然不是很清楚。Bora作为Aurora蛋白激酶A的结合蛋白,在果蝇和脊椎动物中功能高度保守,其主要通过结合Aurora蛋白激酶A从而调节Aurora蛋白激酶A的活性、促进PLK1的磷酸化、调节纺锤体的组装以及调控细胞周期进程等。随着对Bora研究的深入,人们对AuroraA和PLK1的激活机制以及Bora、Aurora蛋白激酶A、PLK1三者对细胞的调控也有了进一步的认识。主要综述Bora在细胞功能调控中的作用和研究机制。  相似文献   
959.
960.
Totally 25 marine soil samples were collected from the region of Palk Strait of Bay of Bengal, Tamil Nadu, and were subjected to the isolation of actinomycetes. Sixty-eight morphologically distinct isolates were obtained and 37% (25) of them had antimicrobial activity. The potential producer was named as Streptomyces sp. VPTS3-1 and the phylogenetic evaluation on the basis of 16S rDNA sequence further categorized the organism as Streptomyces afghaniensis VPTS3-1. Further, the antimicrobial compound was extracted from the isolate using various solvents and the antimicrobial efficacies were tested against bacterial and fungal pathogens. In addition, in vitro optimization of parameters for the antimicrobial compound production revealed that the suitable pH as 7–8, the period of incubation as 9 days, temperature (30°C), salinity (2%), and starch and KNO3 as the suitable carbon and nitrogen sources respectively in starch–casein medium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号