首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6224篇
  免费   671篇
  国内免费   825篇
  7720篇
  2024年   20篇
  2023年   110篇
  2022年   138篇
  2021年   168篇
  2020年   231篇
  2019年   241篇
  2018年   214篇
  2017年   248篇
  2016年   260篇
  2015年   234篇
  2014年   249篇
  2013年   388篇
  2012年   261篇
  2011年   246篇
  2010年   235篇
  2009年   246篇
  2008年   310篇
  2007年   327篇
  2006年   312篇
  2005年   266篇
  2004年   261篇
  2003年   282篇
  2002年   225篇
  2001年   226篇
  2000年   181篇
  1999年   196篇
  1998年   152篇
  1997年   175篇
  1996年   134篇
  1995年   100篇
  1994年   93篇
  1993年   98篇
  1992年   108篇
  1991年   83篇
  1990年   85篇
  1989年   77篇
  1988年   92篇
  1987年   53篇
  1986年   51篇
  1985年   68篇
  1984年   67篇
  1983年   37篇
  1982年   34篇
  1981年   30篇
  1980年   34篇
  1979年   11篇
  1978年   10篇
  1977年   17篇
  1975年   8篇
  1973年   8篇
排序方式: 共有7720条查询结果,搜索用时 12 毫秒
101.
In the present study, the relationship between the nutritional status of leaves and the development of symptoms of cotton leaf curl virus (CLCuV) in two cotton (Gossypium hirsutum L.) cultivars (i.e. CIM-240 and S-12) was investigated. The incidence of disease attack was found to be 100% in the S-12 cultivar and 16% in the CIM-240 cultivar. Geminivirus particles in infected leaves were confirmed by transmission electron microscope examination of highly specific geminivirus coat protein antisera-treated cell sap. The CLCuV impaired the accumulation of different nutrients in both cultivars. A marked decrease in the accumulation of Ca2+ and K+ was observed in infected leaves. However, the disease had no effect on leaf concentrations of Na+, N, and P. It was observed that the curling of leaf margins in CLCuV-infected plants was associated with the leaf Ca2+ content; leaf curling was severe in plants with a significant reduction in Ca2+ content.Moreover, leaf K+ content was found to be associated with resistance/susceptibility to CLCuV infection.  相似文献   
102.
A phenological study is one of the first steps in understanding the function of ecosystems. This is because phenological events reflect the way in which the species exploit the so‐called favourable periods in order to gain carbon and to allocate photosynthetic products for growth and reproduction. The objective of the present work was to examine the phenology of reproduction and the above‐ground growth of several Cenchrus ciliaris accessions, growing under the arid bioclimate in Tunisia. These accessions collected in the south of Tunisia are: Bou Hedma (P1), Tozeur (P2), Raas Jedir (P3) and Sidi Toui (P4). It was demonstrated that an important phenological variability exists within the different accessions studied. The statistical analysis (correlation and principal component analysis) showed that the accession from Bou Hedma (P1) was the most precocious and vigorous one.  相似文献   
103.
Abstract 1 Willows are frequently attacked and defoliated by adult leaf beetles (Phratora vulgatissima L.) early in the season and the plants are then attacked again when new larvae emerge. The native willow Salix cinerea has previously been shown to respond to adult grazing by producing new leaves with an increased trichome density. Subsequent larval feeding was reduced on new leaves. This type of induced plant response may reduce insect damage and could potentially be utilized for plant protection in agricultural systems. 2 Here, we investigated if the willow species most commonly used for biomass production in short rotation coppice, Salix viminalis, also responds to adult beetle grazing by increasing trichome density. Larval performance and feeding behaviour on plants previously exposed to adult beetles was compared with that on undefoliated control plants in a greenhouse. 3 We found an overall decrease in trichome density within all the plants (i.e. trichome density was lower on new leaves compared to that for older basal leaves on S. viminalis). However, leaves of beetle defoliated plants had a higher trichome density compared to control plants. Larval growth and feeding was not affected by this difference between treatments. Larvae appeared to remove trichomes when feeding on S. viminalis, a behaviour that might explain the lack of difference between treatments.  相似文献   
104.
This paper describes a new approach to the calibration of thermal infrared measurements of leaf temperature for the estimation of stomatal conductance and illustrates its application to thermal imaging of plant leaves. The approach is based on a simple reformulation of the leaf energy balance equation that makes use of temperature measurements on reference surfaces of known conductance to water vapour. The use of reference surfaces is an alternative to the accurate measurement of all components of the leaf energy balance and is of potentially wide application in studies of stomatal behaviour. The resolution of the technique when applied to thermal images is evaluated and some results of using the approach in the laboratory for the study of stomatal behaviour in leaves of Phaseolus vulgaris L. are presented. Conductances calculated from infrared measurements were well correlated with estimates obtained using a diffusion porometer.  相似文献   
105.
1. Physiological experiments have indicated that the lower CO2 levels of the last glaciation (200 μmol mol?1) probably reduced plant water-use efficiency (WUE) and that they combined with increased aridity and colder temperatures to alter vegetation structure and composition at the Last Glacial Maximum (LGM). 2. The effects of low CO2 on vegetation structure were investigated using BIOME3 simulations of leaf area index (LAI), and a two-by-two factorial experimental design (modern/LGM CO2, modern/LGM climate).3. Using BIOME3, and a combination of lowered CO2 and simulated LGM climate (from the NCAR-CCM1 model), results in the introduction of additional xeric vegetation types between open woodland and closed-canopy forest along a latitudinal gradient in eastern North America.4. The simulated LAI of LGM vegetation was 25–60% lower in many regions of central and eastern United States relative to modern climate, indicating that glacial vegetation was much more open than today.5. Comparison of factorial simulations show that low atmospheric CO2 has the potential to alter vegetation structure (LAI) to a greater extent than LGM climate.6. If the magnitude of LAI reductions simulated for glacial North America were global, then low atmospheric CO2 may have promoted atmospheric warming and increased aridity, through alteration of rates of water and heat exchange with the atmosphere.  相似文献   
106.
The purpose of this study was to investigate the xylem anatomy and hydraulic characteristics of the mangrove Laguncularia racemosa grown under contrasting salinities. The study addressed the hypothesis that, at high salinity, water transport capacity may decrease in association with higher water use efficiency. Plants were grown in media to which 0, 15 and 30 NaCl was added. Vessel density and diameter were determined in transverse sections of stem and midrib leaves in terminal shoots, and hydraulic parameters were measured. In stems, the vessel density increased with salinity, while the anatomical diameter (d(a)) and hydraulic diameter (d(h)) declined; in leaves, these parameters remained unchanged with salinity. Huber value and hydraulic and specific conductivities decreased with salinity. Leaf blade resistance increased with salinity and represented the largest fraction of twig resistance. Xylem anatomy and leaf tissue of L. racemosa appeared to be modulated by salinity, which led to a coordinated decline in hydraulic properties as salinity increased. Therefore, these structural changes would reflect functional water use characteristics of leaves under salinity.  相似文献   
107.
We report large induction (>65fold increases) of volatile organic compounds (VOCs) emitted from a single leaf of the invasive weed mossy sorrel, Rumex confertus Willd. (Polygonaceae), by herbivory of the dock leaf beetle, Gastrophysa polygoni L. (Coleoptera: Chrysomelidae). The R. confertus VOC blend induced by G. polygoni herbivory included two green leaf volatiles ((Z)-3-hexenal, (Z)-3-hexen-1-yl acetate) and three terpenes (linalool, ß-caryophyllene, (E)-ß-farnesene). Uninjured leaves produced small constitutive amounts of the GLVs and barely detectable amounts of the terpenes. A Y-tube olfactometer bioassay revealed that both sexes of adult G. polygoni were attracted to (Z)-3-hexenal and (Z)-3-hexen-1-yl acetate at a concentration of 300 ng h−1. No significant G. polygoni attraction or repellence was detected for any VOC at other concentrations (60 and 1500 ng h−1). Yet, G. polygoni males and females were significantly repelled by (or avoided) at the highest test concentration (7500 ng h−1) of both GLVs and (E)-ß-farnesene. Mated male and female G. polygoni might be attracted to injured R. confertus leaves, but might avoid R. confertus when VOC concentrations (especially the terpene (E)-ß-farnesene) suggest high overall plant injury from conspecifics, G. viridula, or high infestations of other herbivores that release (E)-ß-farnesene (e.g., aphids). Tests in the future will need to examine G. polygoni responses to VOCs emitted directly from uninjured (constitutive) and injured (induced) R. confertus, and examine whether R. confertus VOC induction concentrations increase with greater tissue removal on a single leaf and/or the number of leaves with feeding injury.  相似文献   
108.
A fundamental goal in ecology is to link variation in species function to performance, but functional trait–performance investigations have had mixed success. This indicates that less commonly measured functional traits may more clearly elucidate trait–performance relationships. Despite the potential importance of leaf vein traits, which are expected to be related to resource delivery rates and photosynthetic capacity, there are few studies, which examine associations between these traits and demographic performance in communities. Here, we examined the associations between species traits including leaf venation traits and demographic rates (Relative Growth Rate, RGR and mortality) as well as the spatial distributions of traits along soil environment for 54 co‐occurring species in a subtropical forest. Size‐related changes in demographic rates were estimated using a hierarchical Bayesian approach. Next, Kendall's rank correlations were quantified between traits and estimated demographic rates at a given size and between traits and species‐average soil environment. Species with denser venation, smaller areoles, less succulent, or thinner leaves showed higher RGR for a wide range of size classes. Species with leaves of denser veins, larger area, cheaper construction costs or thinner, or low‐density wood were associated with high mortality rates only in small size classes. Lastly, contrary to our expectations, acquisitive traits were not related to resource‐rich edaphic conditions. This study shows that leaf vein traits are weakly, but significantly related to tree demographic performance together with other species traits. Because leaf traits associated with an acquisitive strategy such as denser venation, less succulence, and thinner leaves showed higher growth rate, but similar leaf traits were not associated with mortality, different pathways may shape species growth and survival. This study suggests that we are still not measuring some of key traits related to resource‐use strategies, which dictate the demography and distributions of species.  相似文献   
109.
Rhododendron is the largest genus within the subfamily Rhododendroideae, which has about 1000 known species in the world and more than 500 species in China. Since the genus was established by Linnaeus, its infrageneric relationships have been well studied by many taxonomists on the basis of morphological characters and molecular data. In 1996, Chamberlain et al. proposed a new system of Rhododendron with eight subgenera, i.e., Azaleastrum, Candidastrum, Hymenanthes, Mumeazalea, Pentanthera, Rhododendron, Therorhodion, and Tsutsusi. In this paper, micromorphological characters of leaf epidermis in 4 varieties, 48 species, 6 subgenera of Rhododendron from China were examined using light microscopy (LM) and scanning electron microscopy (SEM). Leaf epidermal features are described and micromorphological types are distinguished here according to morphological characters such as scale, gland, foliar trichome and stomatal apparatus of leaf epidermis. It is shown that the leaf epidermal cells are usually irregular or polygonal in shape. The patterns of anticlinal walls are straight, arched or undulate. The stomatal apparatuses are anomocytic and are usually found on abaxial, not adaxial, epidermis. The results also show that: (1) the lepidote rhododendron (i.e., subgen. Rhododendron), which has both scales and papillae on leaf epidermis, differs distinctly from the elepidote rhododendron; (2) three types of leaf epidermis are identified in subgen. Hymenanthes (i.e., R. fortunei-type, R. chihsinianum-type and R. simiarum-type), whereas four in subgen. Tsutsusi (i.e., R. mariesii-type, R. simsii-type, R. mariae-type and R. flosculum-type); (3) except for R. westlandii and R. henryi, the species of subgen. Azaleastrum show similar morphological characters, i.e., dense stomatal apparatuses surrounded by ringed or discontinuous striates; (4) R. molle of subgen. Pentanthera differs from the species of other subgenera on morphological characters such as foliar trichomes, dense stomatal apparatuses with asymmetrical outer stomatal rims surrounded by undulate-striates, and no gland; (5) only R. redowskianum is found with distinct T-pieces at the polar region of guard cells in Rhododendron. The results support the conclusion inferred from molecular systematic studies that subgen. Therorhodion is the basal clade of Rhododendron. Finally, the relationships between the closely related species are also discussed on the basis of leaf epidermal features.  相似文献   
110.
Circoviruses are the smallest circular single-stranded DNA viruses able to replicate in mammalian cells. Essential to their replication is the replication initiator, or Rep protein that initiates the rolling circle replication (RCR) of the viral genome. Here we report the NMR solution three-dimensional structure of the endonuclease domain from the Rep protein of porcine circovirus type 2 (PCV2), the causative agent of postweaning multisystemic wasting syndrome in swine. The domain comprises residues 12-112 of the full-length protein and exhibits the fold described previously for the Rep protein of the representative geminivirus tomato yellow leaf curl Sardinia virus. The structure, however, differs significantly in some secondary structure elements that decorate the central five-stranded beta-sheet, including the replacement of a beta-hairpin by an alpha-helix in PCV2 Rep. The identification of the divalent metal binding site was accomplished by following the paramagnetic broadening of NMR amide signals upon Mn(2+) titration. The site comprises three conserved acidic residues on the exposed face of the central beta-sheet. For the 1:1 complex of the PCV2 Rep nuclease domain with a 22mer double-stranded DNA oligonucleotide chemical shift mapping allowed the identification of the DNA binding site on the protein and aided in constructing a model of the protein/DNA complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号