首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1922篇
  免费   110篇
  国内免费   221篇
  2024年   4篇
  2023年   30篇
  2022年   14篇
  2021年   26篇
  2020年   36篇
  2019年   62篇
  2018年   40篇
  2017年   56篇
  2016年   50篇
  2015年   37篇
  2014年   61篇
  2013年   106篇
  2012年   55篇
  2011年   67篇
  2010年   38篇
  2009年   67篇
  2008年   70篇
  2007年   89篇
  2006年   93篇
  2005年   97篇
  2004年   60篇
  2003年   62篇
  2002年   80篇
  2001年   59篇
  2000年   58篇
  1999年   43篇
  1998年   36篇
  1997年   55篇
  1996年   45篇
  1995年   46篇
  1994年   63篇
  1993年   44篇
  1992年   43篇
  1991年   39篇
  1990年   45篇
  1989年   45篇
  1988年   38篇
  1987年   21篇
  1986年   40篇
  1985年   43篇
  1984年   31篇
  1983年   18篇
  1982年   38篇
  1981年   28篇
  1980年   24篇
  1979年   16篇
  1978年   15篇
  1977年   12篇
  1976年   7篇
  1975年   1篇
排序方式: 共有2253条查询结果,搜索用时 343 毫秒
61.
The effects of environmental variables, particularly irradiance, on the sinking rates of phytoplankton were investigated using cultures of Chaetoceros gracilis Schütt and C. flexuosum Mangin in laboratory experiments; these data were compared with results from assemblages in the open ocean and marginal ice zone of the Greenland Sea. In culture experiments both the irradiance under which the diatom was grown and culture growth rate were positively correlated with sinking rates. Sinking rates (ψ) in the Greenland Sea were smallest when determined from chlorophyll (mean ψchl= 0.14 m · d?1) and biogenic silica (ψsi= 0.14 m · d?1) and greatest when determined from particulate carbon (ψc= 0.55 m · d?1) and nitrogen (ψN= 0.64 m · d?1). Field measurements indicated that variations in sinking may be associated with changes in irradiance and nitrate concentrations. Because these factors do not directly affect water density, they must be inducing physiological changes in the cell which affect buoyancy. Although a direct response to a single environmental variable was not always evident, sinking rates were positively correlated with growth rates in the marginal ice zone, further indicating a connection to physiological processes. Estimats of carbon flux at stations with vertically mixed euphotic zones indicated that approximately 30% of the daily primary production sank from the euphotic zone in the form of small particulates. Calculated carbon flux tended to increase with primary productivity.  相似文献   
62.
Allometric relations between physiological processes and cell volume and surface area are combined with the variable-internal-stores model of growth to predict the ability of hypothetical phytoplankton to compete for phosphorus at equilibrium. The analysis shows that for spherical cells, smaller cells are better competitors than large ones. For cells that are very elongated in shape, however, large cells are often better competitors than small ones. The cells predicted to be the best competitors compare favorably in size and shape with the species observed to dominate in phosphorus-limited chemostats at equilibrium.  相似文献   
63.
Light-saturated photosynthesis (Pmax) of Emiliania huxleyi (Lohmann) Hay et Mohler is known to be carbonlimited at natural concentrations of dissolved inorganic carbon (DIC). In the present study, light-limited and light-saturated photosynthetic rates of E. huxleyi were studied at three concentrations of DIC (2.4, 7.4, and 12.4 mM) for high-calcite (Cin/Ctot=0.48) and low-calcite (Cin/Ctot=0.08) cells of the same strain. The photosynthetic efficiency (α) and the maximum quantum yieldmax)A increased by more than a factor of 2 from the lowest to the highest DIC level. Pmax a, and θmax were always higher for the high-calcite than for the low-calcite cells at identical DIC levels. This may indicate that the calcifcation process acts as an extra supplier of CO2 for photosynthesis making the CO2 shortage at natural DIC levels a little smaller for high-calcite than for low-calcite E. huxleyi. A dependency of θmax on DIC has not previously been shown for marine phytoplankton. θmax is a key parameter in recent biooptical models of phytoplankton productivity, and the results from the present study are therefore important for modeling the productivity of E. huxleyi.  相似文献   
64.
By immunohistochemistry and immunofluorescence methods, we observed that the analog of proliferating cell nuclear antigen (PCNA) in Dunaliella tertiolecta Butcher (Chlorophyceae) was exclusively located in the nucleus. Among positively stained cells, PCNA abundance varied, being highest in S-phase cells, lower in others, and undetectable in early G1- or late M-phase cells. In exponentially growing and partially synchronized cultures, the percentage of PCNA-stained cells (% PCNA-stained cells) oscillated in the photocycle (12:12 h LD). It increased during the light period and reached a peak (75%) before the onset of the dark period when the culture was mainly (71%) in the S phase of the cell cycle. The DNA synthesis inhibitor, hydroxyurea, depressed PCNA abundance, whereas no effect was detected for the mitosis inhibitor colchicine. We conclude that PCNA in D. tertiolecta is associated with the S phase of the cell cycle where it is accumulated and functioning. PCNA was used to characterize the growth pattern of cultures grown in different media, temperatures, and growth stages. The time lag between the PCNA-stained phase and the M phase was very short in a continuous culture grown in reduced f/2 medium at 22°C and was considerably longer in the cultures grown in f/2 at 15°C. When an exponentially growing culture grew older, % PCNA-stained cells decreased. In a late stationary culture where there was no net growth, a small number of cells were still cycling through the PCNA-stained phase and cell division. In the continuous culture grown at 22°C, the duration of the PCNA-stained phase (Ts) was 13 h. Calculations with this Ts and % PCNA-stained cells yielded a growth rate of 0.77 d?1, which was close to that obtained by cell counts (0.69 d?1). Taken together, the results suggest that PCNA is a useful indicator of growth status and a promising cell cycle marker for estimation of species-specific growth rate.  相似文献   
65.
The impact of submerged macrophytes or their extracts on planktonic algae was studied under experimental conditions. Live Ceratophyllum demersum L., its extract, and extracts of four other plant species induced modifications in the phytoplankton dominance structure. These modifications were: a decline in the number of Oscillatoria limnetica Lemm., which was the most numerous cyanobacterian species, and a decline in biomass and percentage contribution of all cyanobacteria to total algal biomass. This was accompanied by an increase in biomass and percentage contribution of green algae, especially Chlorella sp. and Chlamydomonas sp. Also, there was an increase in biomass and percentage contribution of nanoplankton (under 50 µm) to total phytoplankton biomass.The isolation of planktonic algae from direct influence of C. demersum by means of dialysis membranes caused an increase in number, biomass and percentage contribution of cyanobacteria. Release of organic compounds of over 3000 daltons by macrophytes apparently contributed to a decline of cyanobacteria by changing the phytoplankton dominance structure.  相似文献   
66.
Physical, chemical, and biological characteristics of the Kentucky River and its tributaries were assessed for one year to compare effects of seasonal, spatial, and human environmental factors on phytoplankton. Phytoplankton cell densities were highest in the fall and summer and lowest in the winter. Cell densities averaged 1162 (± 289 SE) cells m1–1. Cell densities were positively correlated to water temperature and negatively correlated to dissolved oxygen concentration and to factors associated with high-flow conditions (such as, suspended sediment concentrations). Chrysophytes, diatoms, and blue-green algae dominated winter, spring, and summer assemblages, respectively. Ordination analyses (DCCA) indicated that variation in taxonomic composition of assemblages was associated with stream size as well as season.Spatial variation in phytoplankton assemblages and effects of humans was investigated by sampling 55 sites in low flow conditions during August. Phytoplankton density increased with stream size. Assemblages shifted in composition from those dominated by benthic diatoms upstream to downstream communities dominated by blue-green algae and small flagellates. Human impacts were assumed to cause higher algal densities in stream basins with high proportions of agricultural or urban land use than in basins with forested/mined land use. While density and composition of phytoplankton were positively correlated to agricultural land use, they were poorly correlated to nutrient concentrations. Phytoplankton diversity changed with water quality: decreasing with nutrient enrichment and increasing with conditions that probably changed species composition or inhibited algal growth. Human impacts on phytoplankton in running water ecosystems were as great or greater than effects by natural seasonal and spatial factors. Our results indicated that phytoplankton could be useful indicators of water quality and ecosystem integrity in large river systems.  相似文献   
67.
The distribution of phytoplankton species of a tropical blackwater reservoir is discussed on the basis of spatial differences in water composition and of species abundance and diversity. Spatial heterogeneity in water composition identified three different environments within the reservoir itself: (1) strongly colored waters, high turbidity and iron concentrations at the inflow; (2) calcium enriched, nearly uncolored waters at El Pao Bay; (3) lightly colored water, higher transparency and a higher ratio monovalent to divalent cations in the main body of the reservoir. Three corresponding phytoplankton associations were found. Principal Component Analysis helped to explore the relationship of particular species with the abiotic factors. Among them, water color, turbidity, and mineralization proved to be determinant in habitat diversification.  相似文献   
68.
Lake Baringo is a shallow equatorial lake. This paper reports a diel study of the depth-time distribution of phytoplankton and photosynthesis at one location in Lake Baringo on 10 March 1989. The water column shows a pattern of diurnal stratification probably accentuated by the high turbidity of the water and therefore rapid attenuation of solar energy. This stratified pattern breaks down at night due to atmospheric cooling and the regular onset of winds in the early evening. The phytoplankton is dominated byMicrocystis aeruginosa with some associated epiphytes. It concentrates in the narrow euphotic zone during the diurnal period of stratification due to buoyancy of theMicrocystis; evening breakdown of the thermocline results in the phytoplankton being mixed throughout the water column. A series of measurements of photosynthesis throughout the diurnal period gives an areal rate of 3.8 g O2 m−2 d−1. The relationship between this value and the level of fish exploitation in Lake Baringo is discussed. The diel cycle in Lake Baringo is interpreted as dominating over any seasonal limnological cycle in the lake.  相似文献   
69.
Annual gross primary productivity in mesotrophic Shahidullah Hall pond (Dhaka, Bangladesh) was 1383.35 g C m−2 y−1 (arithmetic mean). Daily primary productivity (between 1.6 and 6.8 g C m−2 d−1 was correlated with chlorophylla, day length and dissolved silica. Chlorophylla related significantly withk, incident light, SRP, alkalinity and conductivity. A negative correlation existed between biomass and rainfall. Productivity, biomass, conductivity, alkalinity, and SRP increased after mid-winter.k, I k andZ eu varied according seasonally.P max related directly with temperature. Seasonal variation of ∝ B was 0.0049–0.0258 mg C (mg chla mmol PAR)−1 m−2. Q10 was 2.12, community respiration 1334.99 g C m−2 y−1, and the underwater light climate 186.43μE m−2 s−1.  相似文献   
70.
Data on phosphate excretion rates of zooplankton are based on measurements using the pelagic crustacean zooplankton of Lake Vechten and laboratory-cultured Daphnia galeata. In case of Daphnia sp we measured the effects of feeding on P-rich algae and P-poor algae (Scenedesmus) as food on the P-excretion rates at 20°C. The excretion rates of the natural zooplankton community, irrespective of the influence of the factors mentioned, varied by an order of magnitude: 0.025–0.275µg PO4-Pmg–1C in zooplankton (C zp ) h–1. The temperature accounted for about half the observed variation in excretion rates. The mean excretion rates in the lake, computed for 20°C, varied between 0.141 and 0.260 µg Pmg–1C zp h–1. Based on data of zooplankton biomass in the lake the P-regeneration rates by zooplankton covered between 22 and 239% of the P-demand of phytoplankton during the different months of the study period.In D. galeata, whereas the C/P ratios of the Scenedesmus used as food differed by a factor 5 in the experiments, the excretion rates differed by factor 3 only. Despite the higher P-excretion rates (0.258± 0.022 µg PO4-P mg–1 C h–1) of the daphnids fed with P-rich food than those fed with P-poor food (0.105 ± 0.047 µg PO4-P mg–1 C hp–1), both the categories of the animals were apparently conserving P. A survey of the literature on zooplankton excretion shows that in Daphnia the excretion rates vary by a factor 30, irrespective of the species and size of animals and method of estimation and temperature used.About two-thirds of this variation can be explained by size and temperature. A major problem of comparability of studies on P-regeneration by zooplankton relates to the existing techniques of P determination, which necessitates concentrating the animals several times above the in situ concentration (crowding) and prolonged experimental duration (starving), both of which manifest in marked changes that probably lead to underestimation of the real rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号