首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4779篇
  免费   280篇
  国内免费   549篇
  5608篇
  2024年   13篇
  2023年   129篇
  2022年   123篇
  2021年   166篇
  2020年   179篇
  2019年   156篇
  2018年   148篇
  2017年   155篇
  2016年   150篇
  2015年   163篇
  2014年   216篇
  2013年   351篇
  2012年   156篇
  2011年   200篇
  2010年   154篇
  2009年   218篇
  2008年   237篇
  2007年   226篇
  2006年   192篇
  2005年   189篇
  2004年   153篇
  2003年   156篇
  2002年   132篇
  2001年   102篇
  2000年   108篇
  1999年   107篇
  1998年   90篇
  1997年   106篇
  1996年   79篇
  1995年   99篇
  1994年   77篇
  1993年   73篇
  1992年   73篇
  1991年   56篇
  1990年   77篇
  1989年   43篇
  1988年   60篇
  1987年   52篇
  1986年   56篇
  1985年   68篇
  1984年   82篇
  1983年   53篇
  1982年   59篇
  1981年   33篇
  1980年   28篇
  1979年   15篇
  1978年   8篇
  1977年   8篇
  1976年   10篇
  1974年   10篇
排序方式: 共有5608条查询结果,搜索用时 15 毫秒
111.
Abstract The metabolism of methanol by acidogenic bacteria ( Butyribacterium methylotrophicum, Sporomusa ovata and Acetobacterium woodii ) was studied in pure culture and in defined mixed cultures with sulfate-reducing bacteria ( Desulfovibrio vulgaris ) or methanogenic bacteria ( Methanobrevibacter arboriphilus strain AZ). In the mixed cultures, less acids (acetate and/or butyrate) were formed per unit methanol converted than in pure cultures. In these mixed cultures, a significant production of sulfide or methane was observed despite the inability of the sulfate reducer and the methanogen to use methanol as an energy substrate. These results are explained in terms of interspecies hydrogen transfer between the acidogens (converting part of the methanol to 1 CO2 and 3 H2) and the Desulfovibrio or Methanobrevibacter species. The bioenergetic aspects of this process and its ecological implications are discussed.  相似文献   
112.
113.
The phytoremediation of triazophos (O, O-diethyl-O-(1-phenyl-1, 2, 4-triazole-3-base) sulfur phosphate, TAP) by Canna indica Linn. in a hydroponic system was studied. After 21 d of exposure, the removal kinetic constant (K) of TAP was 0.0229-0.0339 d(-1) and the removal percentage of TAP was 41-55% in the plant system and the K and removal percentage of TAP were about 0.002 d(-1) and 1%, respectively, in darkness and disinfected control. However, the K and removal percentage of TAP were 0.006 d(-1) and approximately 11%, respectively, in the treatment with eluate from the media of constructed wetland. The contribution of plant to the remediation of TAP was 74% and C. indica played the most important role in the hydroponic system. Under the stress of TAP and without inorganic phosphorus nutrient, the activity of phosphatase in the plant system increased and phytodegradation was observed. The production and release of phosphatase is seen as the key mechanism for C. indica to degrade TAP. C. indica, which showed the potential of phytoremediation of TAP, and is commonly used in constructed wetland, so the technique of phytoremediation of TAP from contaminated water can be developed with the combination of constructed wetland.  相似文献   
114.
Spore germination in Dryopteris filix-mas occurs via a cascade of cellular responses, and chlorophyll formation, mitosis or rhizoid elongation are commonly used as parameters to determine spore germination. Detailed investigations of these parameters led to the hypothesis that they are regulated by different, independent phytochrome-mediated responses. This concept could be confirmed, as is described in this paper which demonstrates that perception of light via phytochrome occurs within two different phases separated in time. Presence of the far-red absorbing phytochrome form, Pfr, for 36 h, induces chlorophyll formation and the first unequal cell division, by which a rhizoid initial and a protonemal initial are formed (first phytochrome-mediated response). However, rhizoid elongation requires a second period of Pfr, presence (second phytochrome-mediated response). There is a clear temporal distinction between the first and the second phytochrome-mediated response with respect to the coupling of Pfr to the transduction chain; Pfr is unable to induce rhizoid growth until 60 h after the start of the first red irradiation. The effectivity of Pfr for inducing the second response shows an optimum at ca 96 h after the beginning of the presence of Pfr; thereafter, it declines slowly. The fluence-response relationship and the presence of red/far-red reversibility demonstrate that rhizoid elongation is a low-fluence response mediated by phytochrome and is independent of the first phytochrome response.  相似文献   
115.
《MABS-AUSTIN》2013,5(5):931-945
Bi-specific antibodies (BsAbs), which can simultaneously block 2 tumor targets, have emerged as promising therapeutic alternatives to combinations of individual monoclonal antibodies. Here, we describe the engineering and development of a novel, human bi-functional antibody-receptor domain fusion molecule with ligand capture (bi-AbCap) through the fusion of the domain 2 of human vascular endothelial growth factor receptor 1 (VEGFR1) to an antibody directed against insulin-like growth factor – type I receptor (IGF-IR). The bi-AbCap possesses excellent stability and developability, and is the result of minimal engineering. Beyond potent neutralizing activities against IGF-IR and VEGF, the bi-AbCap is capable of cross-linking VEGF to IGF-IR, leading to co-internalization and degradation of both targets by tumor cells. In multiple mouse xenograft tumor models, the bi-AbCap improves anti-tumor activity over individual monotherapies. More importantly, it exhibits superior inhibition of tumor growth, compared with the combination of anti-IGF-IR and anti-VEGF therapies, via powerful blockade of both direct tumor cell growth and tumor angiogenesis. The unique “capture-for-degradation” mechanism of the bi-AbCap is informative for the design of next-generation bi-functional anti-cancer therapies directed against independent signaling pathways. The bi-AbCap design represents an alternative approach to the creation of dual-targeting antibody fusion molecules by taking advantage of natural receptor-ligand interactions.  相似文献   
116.
Despite being the main insect pest on soybean crops in the Americas, very few studies have approached the general biology of the lepidopteran Anticarsia gemmatalis and there is a paucity of studies with embryo formation and yolk mobilization in this species. In the present work, we identified an acid phosphatase activity in the eggs of A. gemmatalis (agAP) that we further characterized by means of biochemistry and cell biology experiments. By testing several candidate substrates, this enzyme proved chiefly active with phosphotyrosine; in vitro assays suggested a link between agAP activity and dephosphorylation of egg yolk phosphotyrosine. We also detected strong activity with endogenous and exogenous short chain polyphosphates (PolyP), which are polymers of phosphate residues involved in a number of physiological processes. Both agAP activity and PolyP were shown to initially concentrate in small vesicles clearly distinct from typically larger yolk granules, suggesting subcellular compartmentalization. As PolyP has been implicated in inhibition of yolk proteases, we performed in vitro enzymatic assays with a cysteine protease to test whether it would be inhibited by PolyP. This cysteine protease is prominent in Anticarsia egg homogenates. Accordingly, short chain PolyP was a potent inhibitor of cysteine protease. We thereby suggest that PolyP hydrolysis by agAP is a triggering mechanism of yolk mobilization in A. gemmatalis.  相似文献   
117.
The receptor tyrosine kinase HER2 is associated with a number of human malignancies and is an important therapeutic target. The antibody‐drug conjugate trastuzumab emtansine (T‐DM1; Kadcyla®) is recommended as a first‐line treatment for patients with HER2‐positive metastatic breast cancer. T‐DM1 combines the antibody‐induced effects of the anti‐HER2 antibody trastuzumab (Herceptin®) with the cytotoxic effect of the tubulin inhibitor mertansine (DM1). For DM1 to have effect, the T‐DM1‐HER2 complex has to be internalized and the trastuzumab part of T‐DM1 has to be degraded. HER2 is, however, considered endocytosis‐resistant. As a result of this, trastuzumab is only internalized to a highly limited extent, and if internalized, it is rapidly recycled. The exact reasons for the endocytosis resistance of HER2 are not clear, but it is stabilized by heat‐shock protein 90 (Hsp90) and Hsp90 inhibitors induce internalization and degradation of HER2. HER2 can also be internalized upon activation of protein kinase C, and contrary to trastuzumab alone, the combination of two or more anti‐HER2 antibodies can induce efficient internalization and degradation of HER2. With intention to find ways to improve the action of T‐DM1, we investigated how different ways of inducing HER2 internalization leads to degradation of trastuzumab. The results show that although both Hsp90 inhibition and activation of protein kinase C induce internalization of trastuzumab, only Hsp90 inhibition induces degradation. Furthermore, we find that antibody internalization and degradation are increased when trastuzumab is combined with the clinically approved anti‐HER2 antibody pertuzumab (Perjeta®).  相似文献   
118.
119.
We present a novel fully hydrophilic, hydrolytically degradable poly(ethylene glycol) (PEG) hydrogel suitable for soft tissue engineering and delivery of protein drugs. The gels were designed to overcome drawbacks associated with current PEG hydrogels (i.e., reaction mechanisms or degradation products that compromise protein stability): the highly selective and mild cross‐linking reaction allowed for encapsulating proteins prior to gelation without altering their secondary structure as shown by circular dichroism experiments. Further, hydrogel degradation and structure, represented by mesh size, were correlated to protein release. It was determined that polymer density had the most profound effect on protein diffusivity, followed by the polymer molecular weight, and finally by the specific chemical structure of the cross‐linker. By examining the diffusion of several model proteins, we confirmed that the protein diffusivity was dependent on protein size as smaller proteins (e.g., lysozyme) diffused faster than larger proteins (e.g., Ig). Furthermore, we demonstrated that the protein physical state was preserved upon encapsulation and subsequent release from the PEG hydrogels and contained negligible aggregation or protein–polymer adducts. These initial studies indicate that the developed PEG hydrogels are suitable for release of stable proteins in drug delivery and tissue engineering applications. Biotechnol. Bioeng. 2011; 108:197–206. © 2010 Wiley Periodicals, Inc.  相似文献   
120.
In eukaryotes, membrane and soluble proteins of the secretory pathway enter the endoplasmic reticulum (ER) after synthesis in an unfolded state. Directly after entry, most proteins are modified with glycans at suitable glycosylation sites and start to fold. A protein that cannot fold properly will be degraded in a process called ER associated degradation (ERAD). Failures in ERAD, either by loss of function or by premature degradation of proteins, are a cause of severe diseases. Therefore, the search for novel ERAD components to gain better insight in this process is of high importance. Carbohydrate trimming is a relevant process in ER quality control. In this work a novel putative yeast mannosidase encoded by the open reading frame YLR057W was identified and named Mnl2. Deletion of MNL2 diminished the degradation efficiency of misfolded CPY* in the absence of the cognate mannosidase Mnl1, indicating a specific role in ERAD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号