首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2609篇
  免费   231篇
  国内免费   516篇
  2024年   15篇
  2023年   81篇
  2022年   82篇
  2021年   106篇
  2020年   104篇
  2019年   121篇
  2018年   101篇
  2017年   103篇
  2016年   125篇
  2015年   118篇
  2014年   159篇
  2013年   160篇
  2012年   134篇
  2011年   173篇
  2010年   122篇
  2009年   162篇
  2008年   126篇
  2007年   159篇
  2006年   124篇
  2005年   118篇
  2004年   95篇
  2003年   87篇
  2002年   92篇
  2001年   71篇
  2000年   75篇
  1999年   53篇
  1998年   46篇
  1997年   55篇
  1996年   52篇
  1995年   24篇
  1994年   39篇
  1993年   35篇
  1992年   23篇
  1991年   17篇
  1990年   24篇
  1989年   28篇
  1988年   18篇
  1987年   15篇
  1986年   18篇
  1985年   21篇
  1984年   9篇
  1983年   19篇
  1982年   13篇
  1981年   13篇
  1980年   4篇
  1979年   4篇
  1978年   3篇
  1976年   2篇
  1975年   3篇
  1974年   3篇
排序方式: 共有3356条查询结果,搜索用时 31 毫秒
221.
222.
The goal of this study was to determine if short‐term exposure of brook trout Salvelinus fontinalis and brown trout Salmo trutta to a lower pH than found in their source stream results in a shift in preference or avoidance pH. The lack of a shift in preference or avoidance pH of adult S. fontinalis and S. trutta suggests that these species can be held at a pH different from the source waterbody for a short period of time without altering preference or avoidance pH behaviour.  相似文献   
223.
Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade‐off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing temperature helps providing more accurate predictions on species vulnerability to warming.  相似文献   
224.
The First Conference of the Latin America Chapter of the Cell Stress Society International (CSSI) organized by CSSI was held in Montevideo, Uruguay, on March 11–14, 2014. The Latin America Chapter of the CSSI (LAC-CSSI) was established at the Workshop on the Molecular Biology of the Stress Response, Porto Alegre, Brazil, May 2012. The chapter’s first meeting took place in the beautiful city of Montevideo and was chaired by the first (LAC-CSSI) elected president Professor María Bausero. Forty-two invited speakers presented their work to more than 100 scientists. The first day of the conference was dedicated to an introductory program for students, young investigators, and participants new to the field of molecular chaperones and the stress response. These seminars were held in the Pasteur Institute of Montevideo and the Faculty of Sciences of the University of the Republic. These institutions were carefully selected to give foreign participants a broad view of the diversity of students and institutions doing research in Uruguay, as well as an opportunity for direct interaction with our scientists and students. Invited speakers for the seminar series were Dr. Wolfgang Schumann, Dr. Cristina Bonorino, Dr. Antonio De Maio, Dr. Ian Brown, Dr. Rafael Radi, Dr. Daniel Ciocca, and Dr. Celia Quijano. The remaining days of the conference took place at the Sheraton Hotel in Montevideo, and the scientific sessions are discussed below.  相似文献   
225.
Biocrusts (biological soil crusts) cover open spaces between vascular plants in most arid and semi‐arid areas. Information on effects of biocrusts on seedling growth is controversial, and there is little information on their effects on plant growth and physiology. We examined impacts of biocrusts on growth and physiological characteristics of three habitat‐typical plants, Erodium oxyrhynchum, Alyssum linifolium and Hyalea pulchella, growing in the Gurbantunggut Desert, northwest China. The influence of biocrusts on plant biomass, leaf area, leaf relative water content, photosynthesis, maximum quantum efficiency of PSII (Fv/Fm), chlorophyll, osmotic solutes (soluble sugars, protein, proline) and antioxidant enzymes (superoxide dismutase, catalase, peroxidase) was investigated on sites with or without biocrust cover. Biomass, leaf area, leaf water content, photosynthesis, Fv/Fm and chlorophyll content in crusted soils were higher than in uncrusted soils during early growth and lower later in the growth period. Soluble sugars, proline and antioxidant enzyme activity were always higher in crusted than in uncrusted soils, while soluble protein content was always lower. These findings indicate that biocrusts have different effects on these three ephemeral species during growth in this desert, primarily via effects on soil moisture, and possibly on soil nutrients. The influence of biocrusts changes during plant development: in early plant growth, biocrusts had either positive or no effect on growth and physiological parameters. However, biocrusts tended to negatively influence plants during later growth. Our results provide insights to explain why previous studies have found different effects of biocrusts on vascular plant growth.  相似文献   
226.
227.
Plant responses to wounding are part of their defense responses against insects, and are tightly regulated. The isoleucin conjugate of jasmonic acid (JA‐Ile) is a major regulatory molecule. We have previously shown that inositol polyphosphate signals are required for defense responses in Arabidopsis; however, the way in which inositol polyphosphates contribute to plant responses to wounding has so far remained unclear. Arabidopsis F‐box proteins involved in the perception of JA‐Ile (COI1) and auxin (TIR1) are structurally similar. Because TIR1 has recently been shown to contain inositol hexakisphosphate (InsP6) as a co‐factor of unknown function, here we explored the possibility that InsP6 or another inositol polyphosphate is required for COI1 function. In support of this hypothesis, COI1 variants with changes in putative inositol polyphosphate coordinating residues exhibited a reduced interaction with the COI1 target, JAZ9, in yeast two‐hybrid tests. The equivalent COI1 variants displayed a reduced capability to rescue jasmonate‐mediated root growth inhibition or silique development in Arabidopsis coi1 mutants. Yeast two‐hybrid tests using wild‐type COI1 in an ipk1Δ yeast strain exhibiting increased levels of inositol pentakisphosphate (InsP5) and reduced levels of InsP6 indicate an enhanced COI1/JAZ9 interaction. Consistent with these findings, Arabidopsis ipk1‐1 mutants, also with increased InsP5 and reduced InsP6 levels, showed increased defensive capabilities via COI1‐mediated processes, including wound‐induced gene expression, defense against caterpillars or root growth inhibition by jasmonate. The combined data from experiments using mutated COI1 variants, as well as yeast and Arabidopsis backgrounds altered in inositol polyphosphate metabolism, indicate that an inositol polyphosphate, and probably InsP5, contributes to COI1 function.  相似文献   
228.
The ectopic expression of a MADS box gene FOREVER YOUNG FLOWER (FYF) caused a significant delay of senescence and a deficiency of abscission in flowers of transgenic Arabidopsis. The defect in floral abscission was found to be due to a deficiency in the timing of cell separation of the abscission zone cells. Down-regulation of INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) may contribute to the delay of the floral abscission in 35S:FYF flowers. FYF was found to be highly expressed in young flowers prior to pollination and was significantly decreased after pollination, a pattern that correlated with its function. Ethylene insensitivity in senescence/abscission and the down-regulation of ETHYLENE RESPONSE DNA-BINDING FACTOR 1 (EDF1) and EDF2, downstream genes in the ethylene response, in 35S:FYF Arabidopsis suggested a role for FYF in regulating senescence/abscission by suppressing the ethylene response. This role was further supported by the fact that 35S:FYF enhanced the delay of flower senescence/abscission in ethylene response 1 (etr1), ethylene-insensitive 2 (ein2) and constitutive triple response 1 (ctr1) mutants, which have defects in upstream genes of the ethylene signaling pathway. The presence of a repressor domain in the C-terminus of FYF and the enhancement of the delay of senescence/abscission in FYF+SRDX (containing a suppression motif) transgenic plants suggested that FYF acts as a repressor. Indeed, in FYF-DR+VP16 transgenic dominant-negative mutant plants, in which FYF was converted to a potent activator by fusion to a VP16-AD motif, the senescence/abscission of the flower organs was significantly promoted, and the expression of BOP2, IDA and EDF1/2 was up-regulated. Our data suggest a role for FYF in controlling floral senescence/abscission by repressing ethylene responses and regulating the expression of BOP2 and IDA in Arabidopsis.  相似文献   
229.
The short storage life of harvested cassava roots is an important constraint that limits the full potential of cassava as a commercial food crop in developing countries. We investigated the molecular changes during physiological deterioration of cassava root after harvesting using isobaric tags for relative and absolute quantification (iTRAQ) of proteins in soluble and non‐soluble fractions prepared during a 96 h post‐harvest time course. Combining bioinformatic approaches to reduce information redundancy for unsequenced or partially sequenced plant species, we established a comprehensive proteome map of the cassava root and identified quantitatively regulated proteins. Up‐regulation of several key proteins confirmed that physiological deterioration of cassava root after harvesting is an active process, with 67 and 170 proteins, respectively, being up‐regulated early and later after harvesting. This included regulated proteins that had not previously been associated with physiological deterioration after harvesting, such as linamarase, glutamic acid‐rich protein, hydroxycinnamoyl transferase, glycine‐rich RNA binding protein, β‐1,3‐glucanase, pectin methylesterase, maturase K, dehydroascorbate reductase, allene oxide cyclase, and proteins involved in signal pathways. To confirm the regulation of these proteins, activity assays were performed for selected enzymes. Together, our results show that physiological deterioration after harvesting is a highly regulated complex process involving proteins that are potential candidates for biotechnology approaches to reduce such deterioration.  相似文献   
230.
The objective of this work was to study the effect of plant presence (Phragmites australis) and inoculant origin on wetland mesocosm start-up dynamics. Eight mesocosms were studied based on a duplicated 22 factorial design tracking bacterial community and hydrological changes during an 8 month start-up period. The mesocosms were characterized in terms of their hydrological character based on evapotranspiration (ET), porosity, and a dispersion coefficient. The microbiological regime was characterized using a microbial activity measure and community-level physiological profiling (CLPP) employing BIOLOG™ ECO plates. CLPP-related indices such as substrate richness, substrate diversity, over-all community profile, and community divergence are also presented. It was found that mesocosm porosities decreased over time as a result of media-related biofilm development. This biofilm development also contributed to a substantial increase in the dispersion coefficient in the mesocosms over the start-up period. Dispersion coefficients in planted systems reached values of ∼50-55 cm2/min whereas in the unplanted systems values of ∼30-35 cm2/min were observed. Bacterial community divergence in the mesocosms was quantified using a Euclidean-based divergence metric. All mesocosms showed a sharp increase in community divergence until day 75, at which point a steady state was reached. The interstitial communities were also characterized in terms of similarity based on the experimental design treatments. Four stages of mesocosm development were identified that can be described by an initial community state based on the origins of the initial inoculum [days 0-6]; a dynamic period where adjustments and shifts in the bacterial community occurred in all mesocosms [days 7-26]; a period where all interstitial CLPPs were quite similar [days 27-73]; and finally a shift towards unplanted and planted mesocosm CLPP groupings [days 74-232].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号