首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6169篇
  免费   413篇
  国内免费   503篇
  7085篇
  2024年   15篇
  2023年   89篇
  2022年   110篇
  2021年   126篇
  2020年   144篇
  2019年   179篇
  2018年   212篇
  2017年   160篇
  2016年   164篇
  2015年   162篇
  2014年   267篇
  2013年   378篇
  2012年   162篇
  2011年   273篇
  2010年   209篇
  2009年   263篇
  2008年   322篇
  2007年   326篇
  2006年   274篇
  2005年   259篇
  2004年   214篇
  2003年   194篇
  2002年   161篇
  2001年   121篇
  2000年   134篇
  1999年   136篇
  1998年   105篇
  1997年   140篇
  1996年   113篇
  1995年   120篇
  1994年   122篇
  1993年   115篇
  1992年   100篇
  1991年   101篇
  1990年   102篇
  1989年   87篇
  1988年   92篇
  1987年   67篇
  1986年   77篇
  1985年   92篇
  1984年   126篇
  1983年   94篇
  1982年   98篇
  1981年   82篇
  1980年   76篇
  1979年   56篇
  1978年   19篇
  1977年   13篇
  1976年   8篇
  1973年   10篇
排序方式: 共有7085条查询结果,搜索用时 15 毫秒
81.
We have previously reported that ischemia reperfusion injury results from free radical generation following transient global ischemia, and that this radical induced damage is evident in the synaptosomal membrane of the gerbil. [Hall et al, (1995) Neuroscience 64: 81–89] In the present study we have extended these observations to transient focal ischemia in the cat. We prepared synaptosomal membranes from frontal, parietal-temporal, and occipital regions of the cat cerebral cortex with reperfusion times of 1 and 3 hours following 1 hour right middle cerebral artery occlusion. The membranes were selectively labeled with protein and lipid specific paramagnetic spin labels and analyzed using electron paramagnetic resonance spectrometry. There were significant motional changes of both the protein and lipid specific spin labels in the parietal-temporal and occipital regions with 1 hour reperfusion; but, both parameters returned to control values by 3 hours reperfusion. No significant changes were observed in the normally perfused frontal pole at either reperfusion time. These results support the argument that free radicals play a critical role in cell damage at early reperfusion times following ischemia.  相似文献   
82.
This study deals with isolation of rat hepatocytes by a non-enzymatic method and the separation of intact and damaged cells in sucrose medium. Low speed centrifugation in isotonic sucrose medium of a hepatocyte suspension obtained by mechanical desaggregation of liver pre-perfused with EDTA solution results in the formation of a cell pellet which contains two different layers. A darker layer contains hepatocytes with intact plasma membranes. Their respiratory activity and xenobiotic metabolism are close to those of the cells isolated by collagenase perfusion. The study of distribution of lipophilic cation tetraphenylphosphonium (TPP+) indicates a predominantly mitochondrial localization of TPP+ in the intact cells following non-enzymatic and collagenase isolation. Hepatocytes in the upper layer have damaged plasma membranes. As a result they lose the potential to accumulate TPP+, and have low rates of endogenous respiration and biotransformation activity. Addition of exogenous NADPH restores the capability to metabolize xenobiotics. Washing and incubation of these hepaticytes in an intracellular type medium results in restoration of uncoupler-stimulated oxygen consumption and generation of membrane potential in the presence of a succinate substrate. These properties are close to those of hepatocytes permeabilized by digitonin treatment. Thus, the procedure allows the simultaneous isolation of both intact and permeabilized hepatocytes with functionally active intracellular structures without the use of relatively expensive chemicals such as collagenase and Percoll.Abbreviations 4-OHBP 4-hydroxybiphenyl - BP biphenyl - BSA bovine serum albumin - DNP 2,4-dinitrophenol - EDTA ethylendiamintetraacetate - NADPH nicotinamide adenine dinucleotide phosphate reduced - p-NA p-nitroanisole - p-NPh p-nitrophenol - TPP+ tetraphenylphosphonium  相似文献   
83.
This work aimed at the resolution of the multi-component electric potential changes induced by single-turnover flash illumination of Photosystem-I-enriched subchloroplast vesicles. If supplemented with ferredoxin and under carefully adjusted redox poising, these vesicles show a pronounced slow-rising and -decaying electric potential component, as monitored by endogenous and exogenous field-sensitive probes, carotenoids and oxonol VI, respectively. The fast and slow potential components can be easily discriminated without the need for computer-assisted deconvolution after selective presaturation of the slow component by preillumination or a transmembrane ΔpH, after selective suppression of the slow component by low valinomycin or uncoupler concentrations or in the absence of ferredoxin. The slow electric potential component, as compared to the fast one, is relatively sensitive to low concentrations of ionophores and uncouplers, detergent, ageing and lower temperatures (4–12°C), is associated with electrogenic proton displacements and is interpreted to respond to a field that is more located on the membrane-bulk interface. Temperature effects show transition temperatures around 20°C for both the rise and decay of the slow potential component. The results provide further evidence that the carotenoids and oxonol VI sense the same (slow) electric field, but may be differently located in the thylakoid membrane.  相似文献   
84.
Cytochrome redox changes and electric potential generation are kinetically compared during cyclic electron transfer in Photosystem-I-enriched and Photosystem-II-depleted subchloroplast vesicles (i.e., stroma lamellae membrane vesicles) supplemented with ferredoxin using a suitable electron donating system. In response to a single-turnover flash, the sequence of events is: (1) fast reduction of cytochrome b-563 (t0.5 ≈ 0.5 ms) (2) oxidation of cytochrome c-554 (t0.5 ≈ 2 ms), (3) slower reduction of cytochrome b-563 (t0.5 ≈ 4 ms), (4) generation of the ‘slow’ electric potential component (t0.5 ≈ 15–20 ms), (5) re-reduction of cytochrome c-554 (t0.5 ≈ 30 ms) and (6) reoxidation of cytochrome b-563t0.5 ≈ 90 ms). Per flash two cytochrome b-563 species turn over for one cytochrome c-554. These b-563 cytochromes are reduced with different kinetics via different pathways. The fast reductive pathway proceeds probably via ferredoxin, is insensitive to DNP-INT, DBMIB and HQNO and is independent on the dark redox state of the electron transfer chain. In contrast, the slow reductive pathway is sensitive to DNP-INT and DBMIB, is strongly delayed at suboptimal redox poising (i.e., low NADPHNADP+ ratio) and is possibly coupled to the reduction of cytochrome c-554. Each reductive pathway seems obligatory for the generation of about 50% of the slow electric potential component. Also cytochrome c-559LP (LP, low potential) is involved in Photosystem-I-associated cyclic electron flow, but its flash-induced turnover is only observed at low preestablished electron pressure on the electron-transfer chain. Data suggest that cyclic electron flow around Photosystem I only proceeds if cytochrome b-559LP is in the reduced state before the flash, and a tentative model is presented for electron transfer through the cyclic system.  相似文献   
85.
For the quantitative estimation of surface potential change in intact cells a method was devised with the use of fluorescent probes, 8-anilino-1-naphthalenesulfonate (ANS) and N-phenyl-1-naphthylamine (NPN). Estimated values in liposomes were compared with changes in the zeta potential determined from electrophoresis. Both values agreed within the experimental variation, showing the usefulness of the method. The method was also applied to Tetrahymena pyriformis, which exhibits chemotaxis to various chemical stimuli. The surface potential change was observed when the cell was stimulated not only by inorganic salts but also by electrically neutral, hydrophobic compounds. The surface potential started to change in accordance with the depolarization of the membrane potential, except for the case of K+. Changes in the surface potential of T. pyriformis in response to Ca2+ and K+ were compared with those in the membrane potential. The quantitative contribution of the surface potential to cell depolarization associated with chemoreception is discussed.  相似文献   
86.
Protoplasts were isolated from cortical cells of the elongating zone of maize (Zea mays L. cv. LG 11) roots and submitted to microelectrophoresis. Significant and transient differences in zeta potential between protoplasts from upper and lower root sides were compared with the gravireaction and the differential elongation of these roots. The maximum difference in the zeta potential was obtained between protoplasts from the upper and lower cortical cells after 90 min, exactly the time of gravipresentation for which the maximum rate of gravireaction was observed. In addition, this almost corresponded to the time for which the difference between the elongation rates of upper and lower sides of the extending zone began to increase. Consequently, the changes in the charges of the plasmalemma of the cortical cells from the growing part of roots could be more or less directly related to the root graviresponse.  相似文献   
87.
Staining of living bacteria with rhodamine 123   总被引:5,自引:0,他引:5  
Abstract It is possible to stain live bacteria with rhodamine 123 (R123). The stained fluorescent cells still keep the ability to replicate ( Staphylococcus aureus, Bordetella pertussis ) and to swim (e.g., Salmonella minnesota ). Dead cells or cells with a dissipated transmembrane potential showed markedly diminished fluorescence. Gram-negative strains were stained with different efficiency, presumably reflecting the different constitutions of the outer membrane.  相似文献   
88.
Active transport of -aminoisobutyric acid (AIB) in Vibrio costicola utilizes a system with affinity for glycine, alanine and, to some extent, methionine. AIB transport was more tolerant of high salt concentrations (3–4 M NaCl) in cells grown in the presence of 1.0 M NaCl than in those grown in the presence of 0.5 M NaCl. The former cells could also maintain much higher ATP contents than the latter in high salt concentrations.Transport kinetic studies performed with bacteria grown in 1.0 M NaCl revealed three effects of the Na+ ion: the first effect is to increase the apparent affinity (K t) of the transport system for AIB at Na+ concentrations <0.2 M, the second to increase the maximum velocity (V max) of transport (Na+ concentrations between 0.2 and 1.0 M), and the third to decrease the V max without affectig K t (Na+ concentrations >1.0 M). Cells grown in the presence of 0.5 M or 1.0 M NaCl had similar affinity for AIV. Thus, the differences in salt response of transport in these cells do not seem due to differences in AIB binding. Large, transport-inhibitory concentrations of NaCl resulted in efflux of AIB from cells preloaded in 0.5 M or 1.0 M NaCl, with most dramatic efflux occurring from the cells whose AIB transport was more salt-sensitive. Our results suggest that the degree to which high salt concentrations affect the transmembrane electrochemical energy source used for transport and ATP synthesis is an important determinant of salt tolerance.Abbreviations AIB -aminoisobutyric acid - pmf proton motive force  相似文献   
89.
R B Waring  R W Davies 《Gene》1984,28(3):277-291
A widespread class of introns is characterized by a particular RNA secondary structure, based upon four conserved nucleotide sequences. Among such "class I" introns are found the majority of introns in fungal mitochondrial genes and the self-splicing intron of the large ribosomal RNA of several species of Tetrahymena. A model of the RNA secondary structure, which must underlie the self-splicing activity, is here evaluated in the light of data on 16 further introns. The main body or "core structure" of the intron always consists of the base-paired regions P3 to P9 with the associated single-stranded loops, with P2 present also in most cases. Two minority sub-classes of core structure occur, one of which is typical of introns in fungal ribosomal RNA. Introns in which the core structure is close to the 5' splice site all have an internal guide sequence (IGS) which can pair with exon sequences adjacent to the 5' and 3' splice sites to align them precisely, as proposed by Davies et al. [Nature 300 (1982) 719-724]. In these cases, the internal guide model allows us to predict correctly the exact location of splice sites. All other introns probably use other mechanisms of alignment. This analysis provides strong support for the RNA splicing model which we have developed.  相似文献   
90.
The rubidium content of whole blood was estimated by instrumental neutron activation analysis. In 46 healthy children it amounts to {ie193-1} g/g dry weight. There was no difference between the values found for infants, toddlers, and school children. In 29 dietetically treated patients with phenylketonuria and maple-syrup-urine disease the values were significantly lower than in healthy children. During the first three months of diet therapy the rubidium levels remained in the lower range of the normal values, decreasing to about 60% of the mean of normal values later on. With increasing length of diet therapy these values tended to decrease. It remains questionable whether these decreased levels reflect only an induced biochemical phenomenon without biological importance, or whether they are the first signs of a deficiency syndrome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号