首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5665篇
  免费   850篇
  国内免费   888篇
  2024年   44篇
  2023年   221篇
  2022年   191篇
  2021年   295篇
  2020年   345篇
  2019年   376篇
  2018年   309篇
  2017年   318篇
  2016年   332篇
  2015年   341篇
  2014年   361篇
  2013年   363篇
  2012年   277篇
  2011年   257篇
  2010年   223篇
  2009年   318篇
  2008年   307篇
  2007年   306篇
  2006年   263篇
  2005年   244篇
  2004年   191篇
  2003年   177篇
  2002年   169篇
  2001年   146篇
  2000年   123篇
  1999年   108篇
  1998年   90篇
  1997年   82篇
  1996年   73篇
  1995年   56篇
  1994年   55篇
  1993年   44篇
  1992年   46篇
  1991年   46篇
  1990年   42篇
  1989年   36篇
  1988年   29篇
  1987年   21篇
  1986年   32篇
  1985年   26篇
  1984年   18篇
  1983年   15篇
  1982年   18篇
  1981年   16篇
  1980年   12篇
  1979年   11篇
  1978年   8篇
  1977年   6篇
  1976年   9篇
  1958年   4篇
排序方式: 共有7403条查询结果,搜索用时 31 毫秒
981.
The existence of a coordination between leaf and stem economic spectra in woody species has been postulated repeatedly in the literature, with contrasting results. Here, we postulated that this coordination is conditioned by climate factors, being stronger in stressful environments. To test this hypothesis we explored the coordination between leaf and stem economic spectra in a seasonally dry forest in central Argentina and at the global scale, we analysed if the outcome of their coordination varies along a climatic gradient. At the local scale, we characterized leaf and stem economic spectra in 37 woody species by measuring six leaf and stem functional traits related to resource acquisition and use, and two functional traits used as proxies of water transport and use capacities. At the global scale, a meta‐regression was performed to analyse if the outcome of the coordination among leaf and stem traits varies along gradients of the mean precipitation of the driest quarter and of the minimum temperature of the coldest month. At the local scale, we observed a high integration among the measured leaf and stem traits, and this coordination seemed to be linked to hydraulic properties. At the global scale, we found not only that the overall weighted mean effect size of the correlation between specific leaf area and wood density was significant and negative but also that the coordination between leaf and stem traits seemed to be shaped by climate and tends to become stronger under harsh climate conditions. Furthermore, although our results seem to suggest that their coordination is context‐dependent, alternative strategies could be observed under stressful conditions.  相似文献   
982.
The aim of the current work was to analyze, in the Sarda breed goat, genetic polymorphism within the casein genes and to assess their influence on milk traits. Genetic variants at the CSN1S1, CSN2, CSN1S2 and CSN3 gene loci were investigated using PCR‐based methods, cloning and sequencing. Strong alleles prevailed at the CSN1S1 gene locus and defective alleles also were revealed. Null alleles were evidenced at each calcium‐sensitive gene locus. At the CSN3 gene locus, we observed a prevalence of the CSN3 A and B alleles; the occurrence of rare alleles such as CSN3 B'', C, C', D, E and M; and the CSN3 S allele (GenBank KF644565 ) described here for the first time in Capra hircus. Statistical analysis showed that all genes, except CSN3, significantly influenced milk traits. The CSN1S1 BB and AB genotypes were associated with the highest percentages of protein (4.41 and 4.40 respectively) and fat (5.26 and 5.34 respectively) (< 0.001). A relevant finding was that CSN2 and CSN1S2 genotypes affected milk protein content and yield. The polymorphism of the CSN2 gene affected milk protein percentage with the highest values recorded in the CSN2 AA goats (4.35, at < 0.001). The CSN1S2 AC goats provided the highest fat (51.02 g/day) and protein (41.42 g/day) (< 0.01) production. This information can be incorporated into selection schemes for the Sarda breed goat.  相似文献   
983.
At room temperature, the chlorophyll (Chl) a fluorescence induction (FI) kinetics of plants, algae and cyanobacteria go through two maxima, P at ∼ 0.2-1 and M at ∼ 100-500 s, with a minimum S at ∼ 2-10 s in between. Thus, the whole FI kinetic pattern comprises a fast OPS transient (with O denoting origin) and a slower SMT transient (with T denoting terminal state). Here, we examined the phenomenology and the etiology of the SMT transient of the phycobilisome (PBS)-containing cyanobacterium Synechococcus sp PCC 7942 by modifying PBS → Photosystem (PS) II excitation transfer indirectly, either by blocking or by maximizing the PBS → PS I excitation transfer. Blocking the PBS → PS I excitation transfer route with N-ethyl-maleimide [NEM; A. N. Glazer, Y. Gindt, C. F. Chan, and K.Sauer, Photosynth. Research 40 (1994) 167-173] increases both the PBS excitation share of PS II and Chl a fluorescence. Maximizing it, on the other hand, by suspending cyanobactrial cells in hyper-osmotic media [G. C. Papageorgiou, A. Alygizaki-Zorba, Biochim. Biophys. Acta 1335 (1997) 1-4] diminishes both the PBS excitation share of PS II and Chl a fluorescence. Here, we show for the first time that, in either case, the slow SMT transient of FI disappears and is replaced by continuous P → T fluorescence decay, reminiscent of the typical P → T fluorescence decay of higher plants and algae. A similar P → T decay was also displayed by DCMU-treated Synechococcus cells at 2 °C. To interpret this phenomenology, we assume that after dark adaptation cyanobacteria exist in a low fluorescence state (state 2) and transit to a high fluorescence state (state 1) when, upon light acclimation, PS I is forced to run faster than PS II. In these organisms, a state 2 → 1 fluorescence increase plus electron transport-dependent dequenching processes dominate the SM rise and maximal fluorescence output is at M which lies above the P maximum of the fast FI transient. In contrast, dark-adapted plants and algae exist in state 1 and upon illumination they display an extended P → T decay that sometimes is interrupted by a shallow SMT transient, with M below P. This decay is dominated by a state 1 → 2 fluorescence lowering, as well as by electron transport-dependent quenching processes. When the regulation of the PBS → PS I electronic excitation transfer is eliminated (as for example in hyper-osmotic suspensions, after NEM treatment and at low temperature), the FI pattern of Synechococcus becomes plant-like.  相似文献   
984.
Platyrrhini (New World monkeys, NWm) are a group of primates characterized by behavioral and reproductive traits that are otherwise uncommon among primates, including social monogamy, direct paternal care, and twin births. As a consequence, the study of Platyrrhine primates is an invaluable tool for the discovery of the genetic repertoire underlying these taxon‐specific traits. Recently, high conservation of vasopressin (AVP) sequence, in contrast with high variability of oxytocin (OXT), has been described in NWm. AVP and OXT functions are possible due to interaction with their receptors: AVPR1a, AVPR1b, AVPR2, and OXTR; and the variability in this system is associated with the traits mentioned above. Understanding the variability in the receptors is thus fundamental to understand the function and evolution of the system as a whole. Here we describe the variability of AVPR1b coding region in 20 NWm species, which is well‐known to influence behavioral traits such as aggression, anxiety, and stress control in placental mammals. Our results indicate that 4% of AVPR1b sites may be under positive selection and a significant number of sites under relaxed selective constraint. Considering the known role of AVPR1b, we suggest that some of the changes described here for the Platyrrhini may be a part of the genetic repertoire connected with the complex network of neuroendocrine mechanisms of AVP–OXT system in the modulation of the HPA axis. Thus, these changes may have promoted the emergence of social behaviors such as direct paternal care in socially monogamous species that are also characterized by small body size and twin births.  相似文献   
985.
  1. Understanding the drivers of trait selection is critical for resolving community assembly processes. Here, we test the importance of environmental filtering and trait covariance for structuring the functional traits of understory herbaceous communities distributed along a natural environmental resource gradient that varied in soil moisture, temperature, and nitrogen availability, produced by different topographic positions in the southern Appalachian Mountains.
  2. To uncover potential differences in community‐level trait responses to the resource gradient, we quantified the averages and variances of both abundance‐weighted and unweighted values for six functional traits (vegetative height, leaf area, specific leaf area, leaf dry matter content, leaf nitrogen, and leaf δ13C) using 15 individuals of each of the 108 species of understory herbs found at two sites in the southern Appalachians of western North Carolina, USA.
  3. Environmental variables were better predictors of weighted than unweighted community‐level average trait values for all but height and leaf N, indicating strong environmental filtering of plant abundance. Community‐level variance patterns also showed increased convergence of abundance‐weighted traits as resource limitation became more severe.
  4. Functional trait covariance patterns based on weighted averages were uniform across the gradient, whereas coordination based on unweighted averages was inconsistent and varied with environmental context. In line with these results, structural equation modeling revealed that unweighted community‐average traits responded directly to local environmental variation, whereas weighted community‐average traits responded indirectly to local environmental variation through trait coordination.
  5. Our finding that trait coordination is more important for explaining the distribution of weighted than unweighted average trait values along the gradient indicates that environmental filtering acts on multiple traits simultaneously, with abundant species possessing more favorable combinations of traits for maximizing fitness in a given environment.
  相似文献   
986.
Drosophila suzukii is an invasive pest causing severe damages to a large panel of cultivated crops.To facili tate its biocontrol with stratcgies such as sterile or incompatible insect techniques,D.suzukid must be mass-produced and then stored and transported under low temperature.Prolonged cold exposure induces chill injuries that can be mitigated if the cold period is interrupted with short warming intervals,referred to as fluctuating thermal regimes(FTR).In this study,we tested how to optimally use FTR to extend the shelf life of D.suzukii under cold storage.Several FTR parameters were asessed:temperature(15,20,25℃),duration(0.5,1,2,3 h),and frequency(every 12,24,36,48 h)of warming intervals,in two wild-type lines and in two developmental stages(pupac and adults).Generally,FTR improved cold storage tolerance with respect to constant low temperatures(CLT).Cold mortality was lower when recovery temperature was 20℃ or higher,when duration was 2 h per day or longer,and when warming interruptions occurred frequently(every 12 or 24 h).Applying an optimized FTR protocol to adults greatly reduced cold mortality over long-term storage(up to 130 d).Consequences of FTR on fitness-related traits were also investigated.For adults,poststorage survival was unaffected by FTR,as was the case for female fecundity and male mating capacity.On the other hand,when cold storage occurred at pupal stage,postorage survival and male mating capacity were altered under CLT,but not under FTR.After storage of pupae,female fecundity was lower under FTR compared to CLT,suggesting an energy trade-off between repair of chill damages and C22 production.This study provides detailed information on the application and optimization of an FTR-based protocol for cold storage of D.suzuki that could be useful for the biocontrol of this pest.  相似文献   
987.
988.
Menin  L.  Gaillard  J.  Parot  P.  Schoepp  B.  Nitschke  W.  Verméglio  A. 《Photosynthesis research》1998,55(2-3):343-348
High-Potential Iron-Sulfur Proteins (HiPIP) are small electron carriers, present only in species of photosynthetic purple bacteria having a RC-bound cytochrome. Their participation in the photo-induced cyclic electron transfer was recently established for Rubrivivax gelatinosus, Rhodocyclus tenuis and Rhodoferax fermentans (Schoepp et al. 1995; Hochkoeppler et al. 1996a, Menin et al. 1997b). To better understand the physiological role of HiPIP, we extended our study to other selected photosynthetic bacteria. The nature of the electron carrier in the photosynthetic pathway was investigated by recording light-induced absorption changes in intact cells. In addition, EPR measurements were made in whole cells and in membrane fragments in solution or dried immobilized, then illuminated at room temperature. Our results show that HiPIP plays an important role in the reduction of the photo-oxidized RC-bound cytochrome in the following species: Ectothiorhodospira vacuolata, Chromatium vinosum, Chromatium purpuratum and Rhodopila globiformis. In Rhodopseudomonas marina, the HiPIP is not photo-oxidizible in whole cells and in dried membranes, suggesting that this electron carrier is not involved in the photosynthetic pathway. In Ectothiorhodospira halophila, the photo-oxidized RC-bound cytochrome is reduced by a high midpoint potential cytochrome c, in agreement with midpoint potential values of the two iso-HiPIPs (+ 50 mV and + 120 mV) which are too low to be consistent with their participation in the photosynthetic cyclic electron transfer.  相似文献   
989.
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号